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Recursive Distinctioning 

By Joel Isaacson and Louis H. Kauffman 

Abstract 
In this paper we explore Recursive Distinctioning. 

Keywords: Recursive Distinctioning, algebra, topology, biology, replication, cellular 
automaton, quantum, DNA, container, extainer 

1. Introduction to Recursive Distinctioning 
Recursive Distinctioning (RD) is a name coined by Joel Isaacson in his original patent 
document1 describing how fundamental patterns of process arise from the systematic 
application of operations of distinction and description upon themselves. 2  Louis H. 
Kauffman has written several background papers on recursion, knotlogic, and biologic.3 

RD means just what it says. A pattern of distinctions is given in a space based on a 
graphical structure (such as a line of print, a planar lattice, or a given graph). Each node 

                                            
1 Joel D. Isaacson, “Autonomic String-Manipulation System,” US Patent 4,286,330, August 25, 1981, 
www.isss.org/2001meet/2001paper/4286330.pdf. 
2 See also Joel D. Isaacson, “Steganogramic Representation of the Baryon Octet in Cellular Automata,” 
archived in the 45th ISSS Annual Meeting and Conference: International Society for the System 
Sciences, Proceedings, 2001, www.isss.org/2001meet/2001paper/stegano.pdf; Joel D. Isaacson, “The 
Intelligence Nexus in Space Exploration,” in Beyond Earth: The Future of Humans in Space, ed. Bob 
Krone (Toronto: Apogee Books, 2006), Chapter 24, thespaceshow.files.wordpress.com/2012/02/ 
beyond_earth-ch24-isaacson.pdf; Joel D. Isaacson, “Nature’s Cosmic Intelligence,” Journal of Space 
Philosophy 1, no. 1 (Fall 2012): 8-16. 
3 Louis H. Kauffman. “Sign and Space,” in Religious Experience and Scientific Paradigms: Proceedings of 
the 1982 IASWR Conference (Stony Brook, NY: Institute of Advanced Study of World Religions, 1985), 
118-64; Louis H. Kauffman, “Self-reference and recursive forms,” Journal of Social and Biological 
Structures 10 (1987): 53-72; Louis H. Kauffman, “Special Relativity and a Calculus of Distinctions,” in 
Proceedings of the 9th Annual International Meeting of ANPA (Cambridge: APNA West, 1987), 290-311; 
Louis H. Kauffman, “Knot Automata,” in Proceedings of the 24th International Conference on Multiple 
Valued Logic – Boston (Los Alamitos, CA: IEEE Computer Society Press, 1994), 328-33; Louis H. 
Kauffman, “Eigenform,” Kybernetes 34, no. 1/2 (2005): 129-50; Louis H. Kauffman, “Reflexivity and 
Eigenform – The Shape of Process,” Constructivist Foundations 4, no. 3, (July 2009): 121-37; Louis H. 
Kauffman, “The Russell Operator,” Constructivist Foundations 7, no. 2 (March 2012): 112-15; Louis H. 
Kauffman, “Eigenforms, Discrete Processes and Quantum Processes,” Journal of Physics, Conference 
Series 361 (2012): 012034; Marius Buliga and Louis H. Kauffman, “Chemlambda, Universality and Self-
Multiplication,” in Artificial Life 14 – Proceedings of the Fourteenth International Conference on the 
Synthesis and Simulation of Living Systems, ed. Hiroki Sayama, John Rieffel, Sebastian Risi, René 
Doursat, and Hod Lipson (Cambridge, MA: MIT Press, 2014); Louis H Kauffman, “Iterants, Fermions, and 
Majorana Operators,” in Unified Field Mechanics – Natural Science Beyond the Veil of Spacetime, ed. R. 
Amoroso, L. H. Kauffman, and P. Rowlands (Singapore: World Scientific, 2015), 1-32; Louis H. Kauffman, 
“Biologic,” AMS Contemporary Mathematics Series 304 (2002): 313-40; Louis H. Kauffman, “Self-
Reference, Biologic and the Structure of Reproduction,” Progress in Biophysics and Molecular Biology 
119, no. 3 (2015): 382-409; Louis H. Kauffman, “Biologic II,” in Woods Hole Mathematics, ed. Nils 
Tongring and R. C. Penner, World Scientific Series on Knots and Everything, Vol. 34 (Singapore: World 
Scientific, 2004), 94-132; Louis H. Kauffman, “Knot Logic,” in Knots and Applications (Singapore: World 
Scientific, 1994), 1-110; Louis H. Kauffman, Knots and Physics, 4th ed. (Singapore: World Scientific, 
2012). 

http://www.isss.org/2001meet/2001paper/4286330.pdf
http://www.isss.org/2001meet/2001paper/stegano.pdf
http://thespaceshow.files.wordpress.com/2012/02/beyond_earth-ch24-isaacson.pdf
http://thespaceshow.files.wordpress.com/2012/02/beyond_earth-ch24-isaacson.pdf
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of the graph is occupied by a letter from some arbitrary alphabet. A specialized alphabet 
is given that can indicate distinctions about neighbors of a given node. The neighbors of 
a node are all nodes that are connected to the given node by edges in the graph. The 
letters in the specialized alphabet (call it SA) are used to describe the states of the 
letters in the given graph and at each stage in the recursion, letters in the SA are written 
at all nodes in the graph, describing its previous state. The recursive structure that 
results from the iteration of descriptions is called RD. Here is an example: we use a line 
graph and represent it just as a finite row of letters. The alphabet is SA = {=, [, ], O} 
where “ = ” means that the letters to the left and to the right are equal to the letter in the 
middle. Thus if we had AAA in the line then the middle A would be replaced by =. The 
symbol “[” means that the letter to the left is different. Thus in ABB the middle letter 
would be replaced by [. The symbol “]” means that the letter to the right is different. And 
finally the symbol “O” means that the letters both to the left and to the right are different. 
SA is a tiny language of elementary letter distinctions. Here is an example of this RD in 
operation where we use the proverbial three dots to indicate a long string of letters in 
the same pattern. For example, 

…AAAAAAAAAABAAAAAAAAAA… 

is replaced by 

…=========]O[=========… 

is replaced by 

…========]OOO[========… 

is replaced by 

…=======]O[=]O[=======…. 

Note that the element ]O[ appears and that it has replicated itself in a kind of mitosis. 
See Figures 1 and 2 for a more detailed example of this evolution. In Figure 3 we show 
the evolution of the RD, starting from a more arbitrary string. Elementary RD patterns 
are fundamental and will be found in many structures at all levels. To see a cellular 
automaton example of this phenomenon of patterns crossing levels of structure, we 
later look at a replicator in “HighLife” a modification of John Horton Conway’s automaton 
“Life.” The HighLife replicator follows the same pattern as our RD replicator. However, 
the entity in HighLife that is self-replicating requires twelve steps to do the replication. 
The resultant patterns of replication can be seen in Figures 54 to 61. In the successive 
figures, twelve steps are hidden and we see the same basic pattern shown in Figure 1. 
We can understand directly how the RD replicator works. This gives a foundation for 
understanding how the more complex HighLife replicator behaves in its context. We 
take this phenomenon of the simple and the complex to be generic for many systems. 
By finding a point of simplicity, we make possible the evolution of understandings that 
are otherwise impossible to obtain. 
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Figure 1: RD replication 

 
Figure 2: Second picture of RD replication 
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Figure 3: A string evolution 

We can place the basic idea of RD with the context of cellular automata. RD is distinct 
from other types of cellular automaton in that its basic recursion is based on direct 
distinctions made (locally) in relation to distinctions present in the given state of the 
automaton. In a typical cellular automaton, the next state is obtained on the basis of 
simple distinctions about the previous state. These distinctions are not necessarily at 
the letter level. For example, in a Wolfram line automaton we have eight possible local 
neighborhoods consisting of triples of zeros and ones. 

Any distinction made among these eight, separating them into two classes, is 
acceptable as a rule for the Wolfram automaton. The operation of distinction is shifted to 
a higher level than the question of sameness or difference for nearby iconic elements of 
the state. This is the distinction between our “orthodox” RD models and other recursive 
models. We are interested in rules that involve direct matters of sameness or difference. 
Such RD rules are very primitive rules. Nevertheless, we regard the orthodox RD 
models as part of the larger class of recursive cellular automata. We wish to explore the 
relationships between our primordial structures and the closely related structures of all 
cellular automata as they are understood at this time. 
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Everyone who works in science, mathematics, or computer science is familiar with the 
fundamental role of the concept of distinction and the making of distinctions in both 
theory and practice. For example, Einstein’s relativity depends on a new distinction 
between space and time relative to an observer and a new unification of space and time 
that is part and parcel of this distinction. Every moment of using a digital computer 
depends upon the myriad of distinctions that the computer handles automatically, 
enabling the production and recording of these words and the computation and 
transmission of information. Distinctions act on other distinctions. Once a new 
distinction is born, it becomes the object of further action. Thus grows all the physics 
that comes from relativity and thus grows all the industry of computation that grows from 
the idea and implementation of the Turing machine, the programmed computer. 

And yet it is not usually recognized that it is through RD that all such progress is made. 
We discuss RD both in its human and its automatic aspects. In the automatic aspect, 
we give examples of automata that are based on making very simple distinctions of 
equality and right/left that then, upon allowing these distinctions to act on themselves, 
produce periodic and dialectical patterns that suggest what are usually regarded as 
higher level phenomena. In this way, and with these examples, we can illustrate and 
speculate on the nature of intelligence, evolution, and many themes of fundamental 
science. 

The remarkable feature of these examples of RD is their great simplicity coupled with 
the complexity of behaviors that can arise from them. Notice that each successive string 
in the recursion can be regarded as describing its predecessor. It is remarkable that 
there should be such intricate structure in the process of description. Description is 
another word for making a distinction. The description of a given string is a string of 
individual distinctions that have been made. Each individual distinction is one that 
recognizes whether a given character in a string is equal to a left neighbor, a right 
neighbor, both, or neither. This elementary distinction becomes instantiated as a 
character in the new description string. The description string can be subjected to the 
same scrutiny, and so the recursive process continues. 

Note that this recursive process depends, at its base, on the most elementary 
distinctions possible for character strings. No mathematical calculations are performed. 
We should mention that distinction-making without mathematical computation is 
ubiquitous in natural neuronal processing. Joel Isaacson’s collaboration with Eshel Ben-
Jacob has included attempts to demonstrate RD in live neuronal tissue.4 One can also 
point to the molecular interactions of DNA and RNA as natural RD automata. Finally, we 
can point to Buliga and Kauffman’s5 notion of chemlambda computation as abstract 
chemical combination computing that includes aspects of lambda calculus, but is based 
on direct and local action related to distinctions inherent in the system. 

The epistemology behind this automaton is based directly on distinctions that can be 
made automatic. Other cellular automata are also based on distinctions. For example, 

                                            
4 Private Communication with Eshel Ben-Jacob. 
5 Buliga and Kauffman, “Chemlambda.” 
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the well-known Wolfram line automata6 are based on character strings with only two 
characters and the recognition of the eight possible triples of characters, including 
characters to the left and to the right of a given character. The automaton rule then 
replaces the middle character according to the structure of this neighborhood. There is 
a crucial difference in epistemology between a Wolfram line automaton and our RD 
program. We do not replace according to an arbitrary rule. We place a character that 
describes the distinctive structure of the neighborhood of the predecessor character. 
Our automaton engages in a meta-dialogue about its own structure. This dialogue is 
then entered as a string for the automaton to examine and act upon once again. The 
patterns produced by this recursive distinction are part of a dialogue that the strings 
hold with themselves. One can ask many questions about RD as presented here. The 
automaton we have demonstrated illustrates a concept that can be instantiated in many 
ways. We hope, in a paper to come, to demonstrate Turing universality for automata of 
this type. But in fact we feel that the paradigm of RD goes beyond (or around) the 
paradigm of the Turing machine, and we will discuss that issue as well. 

There is another level to our automaton and that is the level of examining with human 
eyes and minds the output of the automaton, seeing patterns in the whole collection of 
strings and engaging in further design on this basis. This is where the recursive 
automatic distinctions meet the aware distinguishing of the observers of the system, 
connecting the automatic with the aware process and design level that goes on in the 
larger network of science. 

It is the case that in the design of computing machines human beings have for centuries 
confronted the issue of repeatability for the sake of computation or for the sake of the 
production of pattern (as in weaving) or the reliability of manufacture (as in 
timekeeping). This means that elementary distinctions must be reproducible and 
comparable as in mathematical notations, written language, and the mechanics of 
clocks and computing devices. Thus we shall refer to automatic distinctions when we 
speak of highly repeatable physical situations that can be regarded as reproductions of 
distinctions that are available to an observer. In some cases, such distinctions are 
designed by someone who engineers them into the device. In other cases, we 
recognize computational and reproducible patterns in natural situations. The earth goes 
around the sun periodically; the moon goes around the earth. Natural clocks arise from 
these periodicities and regularities observed in our world. Thus, in this essay, we do not 
restrict ourselves in the use of the word distinction to the meaning that a distinction is 
made by some human observer. We refer to distinctions that are ongoing in a device 
beyond our direct observation. Nevertheless, the buck stops at a human observer who 
recognizes the patterns of the device and who interprets the meaning of what has been 
produced. It is then possible to discuss the role of creativity in relation to deterministic 
and automatic actions.7 

                                            
6 Stephen Wolfram, A New Kind of Science (Champaign, IL: Wolfram Media, 2012). 
7 Acknowledgement. We thank Bernd Schmeikal for conversations and for sharing his own research in 
relation to our work. We thank Dan Sandin for a continuing collaboration with Lou Kauffman and 
particularly for sharing the computer program for 2D RD that has been evolved by the two of them. The 
graphical illustrations of 2D RD in this paper were all produced by that program. It also gives us great 
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2. The Logic of Distinction and the Distinction of Logic 
We have introduced the one-dimensional RD and its very simple alphabet based on the 
four iconic symbols shown in Figure 4. In this figure, we use a box rather than a circle 
for the icon that indicates difference to both the right and the left, and we use a box with 
a missing left vertical edge to denote sameness on the left and a box with a missing 
right vertical edge to denote sameness on the right. Sameness on both right and left is 
indicated by the two parallel lines that remain when the two vertical edges of the box are 
removed. In this figure, we give a logical justification for these icons in terms of the act 
of discrimination. That is, we give a logical construction for an icon that describes and 
embodies the discrimination itself. At a given point in the line of letters, there is a given 
letter. This letter is either distinct or different from its neighbor to the left and/or its 
neighbor to the right. We introduce a method to manufacture an icon that expresses 
these distinctions. In order to do this, we insert a line segment in between the space for 
the given letter and the space next to it if there is a difference between the given letter 
and its neighbor. We take as given a line segment at the top of the space and a line 
segment at the bottom of the space. (This actually indicates the condition of the one-
dimensional RD where it is distinct from its context above and below the one dimension 
of operations.) As a result, this process of discrimination constructs four possible icons 
that describe the condition of a given letter. The icons are illustrated (Figure 4), and the 
reader can see that they are an equals sign when there is no distinction to the left or to 
the right, left and right brackets when there is a distinction to the left or the right but not 
both, and a rectangular box when there is a distinction to both the right and the left. In 
the next few paragraphs, we describe this process further in terms of logical operations. 

                                                                                                                                             
pleasure to acknowledge Tom Mandel. Fifteen years ago, on his own initiative, he posted Joel Isaacson’s 
patent and his Stegano paper on the ISSS website, when he managed that site. Furthermore, we feel that 
the basic RD process is a clapping machine realizing part of Tom’s vision for the notion of depicting a 
relationship as a picture where when the This and the That are the two hands, then the Clapping of the 
hands connotes the relationship that is brought forth. In the RD, it is the distinctions and the spaces 
between them that clap in time and produce the “sounds” of further distinctions. Tom uses the notation 
shown below, 

 
or algebraically, (A,B)R = C, where C stands for the (whole) dividing/arising from A and B, and R the 
connection/relation of A and B; the This and the That. Such notation is simple, yet insistent, calling for the 
articulation of the unity C, the relation R and the “parts” A and B: Why is this important? The answer is: 
Because such notation and the attitude behind it continually call the question of relationship and the 
nature of relationship. All descriptions, all systems, are built this way. But we keep forgetting the glue and 
putting it into the background. Here, all three fundamentals in any distinction are brought into the 
foreground. 
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Figure 4: XOR of icons 

The fundamental underlying operation is exclusive or, often denoted by XOR. When we 
say “A XOR B” we mean the statement “A or B but not both A and B.” This special 
version of OR has the property that it is true only when A and B have different truth 
values. Logically, “A or B but not both A and B” is equivalent to “A and not B, or B and 
not A.” In this form we write the formula 

A * B = (A ∧ (∼ B)) ∨ ((∼ A) ∧ B). 

Here A * B denotes “A XOR B”, A ∨ B denotes “A or B,” and A ∧ B denotes “A and B.” 

When working with sets, we can interpret A * B as the intersection of A with the 
complement of B taken in union with the intersection of the complement of A with B. 
This is illustrated in Figure 5. In using the Venn diagrams, we have a very intuitive 
interpretation of XOR. A set is denoted by a shaded circle and when we XOR two sets, 
the part where they overlap vanishes. Thus two identical sets will yield an empty 
diagram under this operation. In this sense, a set is its own negation! We return to this 
point of view in Section 10 when we discuss the relationship of RD with Spencer-
Brown’s Laws of Form. In letting one shaded region operate upon another, the parts that 
remain black after the XOR operation indicate the differences between the two sets. In 
this way, XOR is a logical exemplar of the operation of discrimination and it can be 
understood to underlie all the RD operations we describe. One can imagine that 
discrimination (as practiced by thinking beings) is more complex than XOR, but XOR is 
a backbone or skeletal aspect of all instances of discrimination. 
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A or B but not both A and B. 

 
A XOR B = A*B = A^(~B) v (~A)^B 

Figure 5: XOR in Venn diagrams 

Now view Figure 4 once more. Here we show explicitly how the XOR operation acts on 
the icons for the 1D RD to produce the icons at the next iteration. We use a vertical 
slash | and an unmarked vertical slash for the two states of discrimination. We call these 
the marked and unmarked states, respectively. Given two such states, we define A * B 
as marked if one of A and B are different. If A equals B, then A * B is unmarked. This 
construction is then applied to the local interactions of the icons in the RD. If we have a 
row with ABC in that row, then for the new B, we form A * B and B * C. These vertical 
slashes or unmarked slashes become the left and right ends of the new icon that 
represents the new B in the next row of the RD, one full time-step later. Thus the new 
icon is formed by the discriminations to its left and to its right in regard to those neighbor 
icons. The figure shows explicitly how we leave the horizontal lines of the icon 
unchanged while we change the vertical slashes. As mentioned at the beginning of this 
section, this means that the logic of left and right naturally creates the four icons that are 
used in the 1D RD. The alphabet arises in the act of discrimination. The act of 
discrimination is quite general for the RD. Any letters or icons can be given to it at the 
start. The XOR applies to make the discrimination and to produce a standard icon that 
indicates the left-right discrimination that was made. 

Now view Figure 6, where we indicate how the XOR process can be accomplished by 
digital circuitry. The figure should be self-explanatory. There is a basic inverting element 
that will take states to their opposites and, with a multiplicity of inputs, this inversion is 
regarded as a NOR gate. That is, one starts with a collection of variables {a, b, c, d} and 
the NOR gate returns ∼ (a ∨ b ∨ c ∨ d). The circuit then implements the formula for the 
XOR operation that we have given above. This means that we could have an RD 
automaton that sampled signals inside a larger digital environment. It also means that 
we can look at the RD as connected inside an information-processing environment that 
uses logical operations in great generality. In particular, one could think of a sensing 
device that can detect differences in signals with which it otherwise has no direct 
access. Isaacson 8  has called such external but not directly detectable signals 
fantomarks. The information about their differences can become the initial data for an 
RD system that then amplifies and modifies these patterns, allowing the possibility for 
communication (by letting another system find differences in the signals generated by 

                                            
8 Isaacson, “Autonomic String-Manipulation System.” 

A^(~B) (~A)^B 
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this RD) between systems that have internal states that are fantomarked for the other 
system. Isaacson has speculated that this could be the basis for communicating with 
extraterrestrials. Here we point out that it can be regarded as a partial description of the 
situation of human-to-human communication with its mix of local-to-global discrimination 
based on the detection and articulation of differences. 

 
Figure 6: XOR circuit 

We regard this description of the process of discrimination to be fundamental. A ground 
that is subject to discrimination is given at the beginning. The XOR operations probe 
this ground and write naturally via marked and unmarked states in the geometry and 
alphabet of special icons that can be further discriminated by the same process. The 
icons record a neighborhood of discriminations. In the case of 1D RD, this 
neighborhood is described in terms of left and right. The process of discrimination 
alternates between the local indications of marked and unmarked states (the vertical 
slash and its absence) and the global examination of icons for their identity or 
difference. It is this crossing of levels that makes the structure of the RD process 
repeatable and unique. 

In general, an RD structure has alphabetic elements at specific loci. A process of 
discrimination generates an icon for that location that describes the distinctions between 
that letter and its neighbors. These icons of distinction become the letters of a special 
alphabet that is coherent with the geometry of the RD structure. The recursion replacing 
present icons or alphabetic elements with these icons of distinction is the process of 
RD. The process arises directly from the idea of description and the fundamental 
distinction of the given geometry. In the next section, we show how this works for two-
dimensional RD. 

3. Two-Dimensional RD, a 16-Letter Alphabet, Quaternions and Spacetime 
We now consider a natural generalization of the one-dimensional RD to two 
dimensions. The geometry of the 2D RD is a rectangular lattice with square cells. Each 
cell is regarded as having four neighbors, one to the north, one to the south, one to the 
east, and one to the west, each sharing a one-dimensional interval of common 
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boundary. The simplest occupant of such a cell corresponds to openings or closings of 
the four parts of the boundary. Thus one can block all of the boundary, or all but one 
edge of the boundary, or all but two edges of the boundary and continue until one has 
the unique empty icon with no edges from the boundary. This makes a 16-letter 
alphabet, as illustrated in Figures 7 and 8. 

 
Figure 7: A snapshot of a 2D RD 

 
Figure 8: The 2D alphabet 1 

In Figures 9 and 10, we indicate how to code the letters as ordered sequences of four 
elements, each element a plus or a minus sign. In these figures, we also indicate how to 
make XOR combinations of these edges of the icons. The rule is simply that the 
superposition of two edges cancels them. With this, we can combine the letters to form 
other letters by superimposing them. When two letters are identical, then the 
superposition is the empty letter. Otherwise it is not empty, and it is a new resultant 
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letter. Thus, we see that this superposition of letters serves to distinguish one letter from 
another. Two letters are distinct if and only if their superposition is empty. 

 
Figure 9: The 2D alphabet 2 
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Figure 10: The 2D alphabet 3 

In the sequence from Figure 11 to Figure 19, we show eight steps from the first figure 
and returning to that figure. The first figure is an empty box with a fixed boundary 
condition that declares that its outer squares are different from the adjacent squares 
outside the box. Each successive figure is the result of one redescription by the RD 
process. In this case and with this initial condition, the process has period eight. 
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Figure 11: 2D RD box, no seed 

 
Figure 12: 2D RD box, no seed 
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Figure 13: 2D RD box, no seed 

 
Figure 14: 2D RD box, no seed 
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Figure 15: 2D RD box, no seed 

 
Figure 16: 2D RD box, no seed 
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Figure 17: 2D RD box, no seed 

 
Figure 18: 2D RD box, no seed 
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Figure 19: 2D RD box, no seed 

In the sequence from Figure 20 to Figure 32, we show the same box with a different 
initial condition (some marked spaces inside). Now the evolution is more complex, as is 
illustrated in the figures. Remarkably, in this case the result is eventually periodic of 
period two. 

 
Figure 20: 2D RD box with seed 
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Figure 21: 2D RD box with seed 

 
Figure 22: 2D RD box with seed 
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Figure 23: 2D RD box with seed 

 
Figure 24: 2D RD box with seed 
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Figure 25: 2D RD box with seed 

 
Figure 26: 2D RD box with seed 
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Figure 27: 2D RD box with seed 

 
Figure 28: 2D RD box with seed 
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Figure 29: 2D RD box with seed 

 
Figure 30: 2D RD box with seed 
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Figure 31: 2D RD box with seed 

 
Figure 32: 2D RD box with seed 

Figure 33 and Figure 34 illustrate two consecutive frames from this automaton after it 
has entered period two. The reader can compare these two frames and see that each 
describes the other. Focus on the pair of 2D patterns, Tweedledum and Tweedledee, in 
these two figures. What is remarkable about these two patterns is that they mutually 
describe each other in such a way that they complement each other, just like a positive 
and a negative in photography. If separated, each would construct its complement, and 
the patterns would replicate indefinitely. So these are antithetical and their superposition 
yields a synthesis. (A synthesis here would be the big square filled completely with only 
little squares.) Note that they are typical in many 2D RD runs and are not exceptions. 
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Figure 33: Tweedledum 

 
Figure 34: Tweedledee 

The two strands of DNA are also complementary, which allows their replication. The 
reader will recognize how much more complex this 2D complementarity is than the 1D 
complementarity of DNA. Obviously, no one can dream of or design such intricate 
mutual descriptions of patterns, and yet they are by-products of an automatic RD 
automaton. One might speculate that the DNA molecule with its complementary Watson 
and Crick strands evolved through recursive chemical interactions. 

3.1 Quaternions and Iterants 
In this subsection, we show how the 16-letter alphabet is related to the algebra of the 
quaternions and concomitantly to the algebra of spacetime. Before we do this, however, 
it will be helpful to explain a way to think about such matters that is developed in the 
paper by Kauffman (and the references therein).9 In that paper, one finds a temporal 
interpretation of the square root of minus one. The idea is that one starts with a simple 
oscillation such as 

…+−+−+−+−+−…. 

                                            
9 Kauffman, “Iterants, Fermions, and Majorana Operators.” 
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Starting in this way, we can connect with RD simply by observing that some of the 
simplest 1D RD with tight boundary conditions will oscillate with period two. Once 
recursion is on the scene, the simplest oscillations are inevitably present. That said, let 
us make two abbreviations that correspond to two ways to distinguish a period two 
oscillation: 

[+, −] = [+1, −1] 

and 

[−, +] = [−1, +1]. 

These two ordered pairs correspond to distinguishing the oscillation as proceeding from 
plus to minus or as proceeding from minus to plus. 

Call an ordered pair such as [a, b] an iterant. We can combine iterants by adding their 
coordinates or by multiplying their coordinates. 

[a, b] + [c, d] = [a + c, b + d] 

[a, b][c, d] = [ac, bd]. 

We add to this structure an operator η that participates in the time shift that relates one 
iterant to the other. 

η2 = 1 

[a, b]η = η[b, a]. 

Formally, η acts as a permutation of order two, exchanging [a, b] for [b, a] when it is 
commuted with an iterant. We regard an element of the form [a, b]η as a temporally 
sensitive iterant. Note what happens when we multiply 

i = [+1, −1]η 

by itself. 

i2 = ii = [+1, −1]η[+1, −1]η = [+1, −1][−1, +1]ηη = [(+1)(−1), (−1)(+1)]1 = [−1, −1] = −1. 

Thus 

i2 = −1. 

We have produced a square root of minus one as a temporally sensitive iterant 
associated with an elementary oscillation. 

In fact, we have produced an algebra containing 

{η,1 = [1, 1],−1 = [−1, −1],α = [1, −1],−α = [−1, 1]}.  
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Note that 

η2 = α2 = 1 

and that 

αη + ηα = 0. 

This is a first example of a Clifford algebra, an algebra generated by elements of square 
one that anti-commute with one another. We have i = αη and 

i2 = αηαη = α(−α)η2 = −α2 = −1. 

Thus, we can also see our temporal interpretation of the square root of minus one as a 
Clifford algebra phenomenon. 

Clifford algebras are deeply connected with physics. To see a hint of this we consider a 
fundamental formula from special relativity theory (we use the convention that the speed 
of light is c = 1.). Let E denote energy, p momentum, and m the mass of a particle. Now 
let 

E = αp + ηm. 

Assume that p and m commute with α and β. You can easily prove by multiplying it out 
that 

E2 = (αp + ηm)(αp + ηm) = α2p2 + η2m2 + (αη + ηα)pm = p2 + m2 + 0pm = p2 + m2. 

This formula E2 = p2 + m2 is fundamental to special relativity, and we have shown that it 
follows from a Clifford algebra representation of the energy. This way of writing the 
energy is due to the great physicist Dirac, and is the beginning of the deep relationship 
between Clifford algebra and physics. Our point is that by looking at this through the 
lens of iterants, we can draw a connection between fundamental recursion and quantum 
and relativistic physics.10 

Now we turn to the quaternions. Sir William Rowan Hamilton discovered quaternion 
algebra in 1843, after 15 years of trying to find a three-dimensional analog for complex 
numbers. When he realized the key was a four-dimensional space, the pattern fell into 
place. Recall that the quaternions are generated by {1, −1, I, J, K} so that I2 = J2 = K2 = 
IJK = −1 from which it follows that IJ = K, JK = I, and KI = J, and that IJ = −JI, JK = −KJ, 
and KI = −IK. 

There is a natural iterant structure for the quaternions (see Figure 35). In this figure we 
show the order four iterant sequences that correspond to each of I, J, and K and the 
analogy of the simple time shifter η that is associated with each one. These analogs are 

                                            
10 For further details, see Bernd Schmeikal, “Basic Intelligence Processing Space,” Journal of Space 
Philosophy 5, no. 1 (Spring 2016): 65-89; Kauffman, “Iterants, Fermions, and Majorana Operators.” 
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diagrammed as permutations, and they act when one composes the iterants by 
attaching their braided forms together. The new temporal shift operators generate the 
so-called Klein Four Group, the symmetries of a square.11 We now show how this 
iterant version of the quaternions is related to our 16-letter alphabet and how the 
symmetries of the square come into play directly. 

 
Figure 35: Iterant representation of the quaternions 

Now we turn to Figure 36, where we show how there is a natural quaternion structure 
associated with the 16-letter alphabet. What you see is a subset of the 16-letter 
alphabet and the operations A, B, C (and 1) of the Klein Four Group. We define I, J, K 
each of the form I = aA, J = bB, and K = cC where a, b, and c are certain elements of 
the 16-letter alphabet. We then define, e.g., xA = AxA, where xA is the operation of the 
symmetry element A on the letter x. We define xy (on letters) via XOR of the 
corresponding letters in the alphabet. We find that I, J, and K give the quaternions. Thus 
the quaternions are a combination of XOR operations and symmetry operations in the 
alphabet. Note that xy = XOR(x,y) = the result of superimposing x and y as letters and 
canceling common occurrences. Once we have the quaternions, we have an entry into 
spacetime algebra as follows. We have II = JJ = KK = IJK = −1. Let E = (x,y,z,t) = xI + yJ 
+ zK + t1 where x, y, z, and t are real numbers. Then think of E as a point in spacetime. 
We have 

E2 == (xI + yJ + zK + t1)(xI + yJ + zK + t1) = −x2 −y2 −z2 +t2 

                                            
11 See Kauffman, “Iterants, Fermions, and Majorana Operators” for more details. 
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Which is the Minkowski metric (it is often written as the negative of this expression) for 
spacetime. 

 
Figure 36: The 2D alphabet 4 

Electromagnetism and much other physics can be written in quaternionic language. One 
can start with a Clifford algebra with generators e1, e2, e3, e4 with (ei)2 = 1 and distinct 
elements anti-commuting and construct spacetime algebra, the quaternions, and more. 
The iterant structure that we have hinted at here is part of a reformulation of the 
mathematics of matrix algebra that puts it into a temporal framework and a framework 
that respects the ubiquitous appearance of the symmetries of permutation groups. It is 
likely that in another generation of the RD concept, we shall include more about the role 
of symmetry. In this way, we have the beginnings of a relationship of RD structure and 
fundamental frameworks for physical theory. 12 All this said, we have made only a 
superficial connection between the spacetime algebra of the quaternions and the 
actions or operations of the 2D RD. 

The iterant process is in back of the quaternion multiplication, where the symmetry 
group acts on the alphabetical letters. This could become part of an extension of RD 
operations. Then the RD would not just compare and describe. It would also interact 
with its own descriptions and change them by certain symmetry operations. This is one 
possibility for adding rules, but we do not yet have a clear picture of what extra structure 
can be added naturally to the very simple base with which we have started. 

                                            
12  For further details, see Schmeikal, “Basic Intelligence Processing Space”; Kauffman, “Iterants, 
Fermions, and Majorana Operators.” 
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4. Distinctions, Distinctioning and Wolfram Automata 
In this section, we make a comparison with the general structure of Wolfram line 
automata.13 The Wolfram automata use a very simple alphabet consisting of two letters 
(black and white, or 0 and 1). At every stage in the process, a distinction is applied to 
the eight possible states consisting of a square and its neighbors to the left and to the 
right. The distinction assigns 0 or 1 to each of these states, and the fate of the middle 
square in the next row is decided by that distinction. We see that these line automata 
are certainly RD automata, but that they are not strictly orthodox in our sense, in that 
the alphabet is not descriptive of all the local distinctions under consideration. The 
alphabet is simple, but the distinctions that can be made are complex. The result of this 
choice leads to a large and interesting body of phenomena. 

In Figure 37, we see a depiction of the results of applying Wolfram Rule 126. As the 
reader can see, by comparison with Figure 1 and Figure 2, the overall pattern resulting 
from Rule 126 is essentially the same as that obtained from our 1D RD. The underlying 
structure of alphabet and distinction is different. This is a first example indicating the 
need for more detailed comparison between orthodox RD rules and cellular automata. 
We will leave such analysis for further work. In Figures 38 and 39 we illustrate Rule 110 
and show how its iteration looks. It differs from Rule 126 in only one place. This de-
symmetrization of Rule 126 results in very complex behavior. Here we are farther from 
the simple 1D RD. Rule 110 takes full advantage of the very simple alphabet of zero 
and one, and it uses an asymmetrical distinction on the set of eight triples of zeros and 
ones. The result is a very complex pattern of evolution and an automaton that has been 
proved to be Turing universal. One can certainly regard Rule 110 as a highly successful 
application of non-orthodox RD. We will return to this rule in a subsequent paper and 
examine it further in the light of RD structure. 

 
Figure 37: Wolfram Rule 126 

                                            
13 Wolfram, New Kind of Science. 
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Figure 38: Wolfram Rule 110 

 
Figure 39: Wolfram Rule 110 

5. The HighLife Replicator 
This section is a comparison of patterns of the self-replicating element in the 1D RD and 
a very similar pattern in the much more complicated environment of the two-dimensional 
cellular automaton called HighLife, a variant of John Horton Conway’s Game of Life. In 
HighLife, the environment is a rectangular lattice and each square is regarded as having 
eight neighbors. We could analyze an orthodox RD with an alphabet that generalizes 
the 16-letter alphabet to a 256 = 28 letter alphabet for this geometry. This analysis is a 
future project for us. HighLife uses a simple binary rule. Each square in the lattice is 
either occupied (by a marker) or it is unoccupied (unmarked). We say that a square has 
n neighbors (where n is between 0 and 8) if n of its neighboring squares are occupied. 
The rule for HighLife is that an occupied square will survive (remain occupied) only if it 
has two or three neighbors. Otherwise it will become unmarked (“die”). An unoccupied 
square will become occupied (be “born”) if it has three or six neighbors. In HighLife, 
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there is a remarkable, small configuration that can reproduce itself. It takes 12 steps for 
this replication process to take place. See Figures 40-52. 

 
Figure 40: The HighLife Replicator 

 
Figure 41: The HighLife Replicator 

 
Figure 42: The HighLife Replicator 

 
Figure 43: The HighLife Replicator 

 
Figure 44: The HighLife Replicator 

 
Figure 45: The HighLife Replicator 

 
Figure 46: The HighLife Replicator 
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Figure 47: The HighLife Replicator 

 
Figure 48: The HighLife Replicator 

 
Figure 49: The HighLife Replicator 

 
Figure 50: The HighLife Replicator 

 
Figure 51: The HighLife Replicator 

 
Figure 52: The HighLife Replicator 

Quite remarkably, the pattern that these replicators follow is essentially the same as the 
pattern that is followed by the self-replicating element in the 1D RD. See Figures 53 to 
60. 
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Figure 53: The 12-step HighLife replicator  

 
Figure 54: The 12-step HighLife replicator 

 

Figure 55: The 12-step HighLife replicator 

 
Figure 56: The 12-step HighLife replicator 

 
Figure 57: The 12-step HighLife replicator 

 
Figure 58: The 12-step HighLife replicator 

 
Figure 59: The 12-step HighLife replicator 
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Figure 60: The 12-step HighLife replicator 

6. RD and DNA 
We begin this section with a review of material from the introduction to the paper. In this 
section, we describe one version RD process, and we show how it gives rise to a 
pattern of self-replication that is recognizable as a case of replication that we have 
called DNA replication.14 

The rules for the RD process are very simple. We begin with an arbitrary, finite text 
string delimited by the character * at both ends. The RD process creates a new string 
from the given string by describing the distinctions in the initial string. Each character in 
the initial string is examined together with its left and right neighbors. Let LCR denote a 
character C with neighbors L and R. Then we replace C by a new character according 
to the following rules: 

1. C → = if L = C and C = R (no distinction). 
2. C → [ if L ≠ C but C = R (distinction on the left). 
3. C → ] if L = C but C ≠ R (distinction on the right). 
4. C → O if L ≠ C and C ≠ R (distinction on both the left and the right). 
5. If C is adjacent to * change C to = (This is just a choice of boundary behavior). 

See Figure 3 for the result of applying the RD process to a chosen text string. 

In Figure 1, we showed the result of starting with a very simple text string. In this figure 
we do not print the character =, so that the resulting strings have empty space where 
this character would appear. As the reader can see, the string * ======]O[====== * 
has a long sequence of transformations under the RD process. The pattern ]O[ is 
replicated by the sequence below. 

1 …=======]O[=======… 

2 …======]OOO[=======… 

3 …=====]O[=]O[======… 

Remarkably, this self-replication has the same pattern as an abstract description of DNA 
replication. We explain this below in a separate section. 

                                            
14 Kauffman, “Biologic”; Kauffman, “Self-Reference.” 
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6.1 A Quick Review of the Pattern of DNA Replication 
DNA consists of two strands of base-pairs wound helically around a phosphate 
backbone. It is customary to call one of these strands the Watson strand and the other 
the Crick strand. Abstractly, we can write 

DNA = < W | C > 

to symbolize the binding of the two strands into the single DNA duplex. Replication 
occurs via the separation of the two strands via polymerase enzyme. This separation 
occurs locally and propagates. Local sectors of separation can amalgamate into larger 
pieces of separation as well. Once the strands are separated, the environment of the 
cell can provide each with complementary bases to form the base pairs of new duplex 
DNAs. Each strand, separated in vivo, finds its complement being built naturally in the 
environment. This picture ignores the well-known topological difficulties present to the 
actual separation of the daughter strands (see Figure 61). In this figure, we give some 
hints about the topological complexities that are not discussed here. Biologists 
discovered enzymes that cut and reconnect strands of DNA, resulting in the release of 
topological linking that would otherwise obstruct the separation of the newly produced 
strands of DNA. All this is subject to another discussion of its relationship with RD 
concepts. 

 
Figure 61: DNA Replication 

The base pairs in the DNA sequence are AT (Adenine and Thymine) and GC (Guanine 
and Cytosine). Thus if 

< W | = < … TTAGAATAGGTACGCG … | 

then 

| C > = | … AATCTTATCCATGCGC … >. 

Symbolically we can oversimplify the whole process as 
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< W | + E → < W | C > = DNA 

E + | C > → < W | C > = DNA 

< W | C > → < W | + E + | C > = < W | C >< W | C > 

Either half of the DNA can, with the help of the environment, become a full DNA. We 
can let E → | C > < W | be a symbol for the process by which the environment supplies 
the complementary base pairs AG, TC to the Watson and Crick strands. In this 
oversimplification, we have cartooned the environment as though it contained an 
already-waiting strand | C > to pair with < W | and an already-waiting strand < W | to pair 
with | C >. 

In fact, it is the opened strands themselves that command the appearance of their 
mates. They conjure up their mates from the chemical soup of the environment. 

The environment E is an identity element in this algebra of cellular interaction. That is, E 
is always in the background and can be allowed to appear spontaneously in the cleft 
between Watson and Crick: 

< W | C > → < W | | C > → < W | E | C > 

→ < W | | C >< W | | C > → < W | C >< W | C >. 

This is the formalism of DNA replication. 

We are now in a position to compare the formalism of the DNA replication with the RD 
replication. 

1 …=======]O[=======… 

2 …======]OOO[=======… 

3 …=====]O[=]O[======… 

In the RD replication, we start with ]O[ in its RD environment. Matters of distinction of 
this entity from its surroundings lead to the production of ]OOO[, and then we see that 
the identity of the internal O with its neighbors leads to the splitting ]O[=]O[. There is no 
question that the basis of this replication is not the same as the DNA replication, but 
thematically, the two patterns are certainly related. The RD pattern is at a different level 
than the DNA pattern. In the RD replication, that environment for the symbol string is the 
larger symbol string. Thus it is only in the eyes of the observer of the RD that the entity 
]O[ is distinguished and is seen as an actor against the background of declarations of 
identity …========…. These declarations of identity are indeed equal to one another 
and so form an invariant background or void from which patterns arise in the presence 
of any difference. This is, in fact how our entity came into being. 

…AAAAAAAAAAAAABAAAAAAAAAAAAA… 
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…==============]O[===============… 

Our entity ]O[ is the first description of sameness on left, difference in middle, sameness 
on the right. The left and right icons ] and [ form a carapace for the indicator of 
difference O. Thus a bare difference of B from its equal neighbors A evolves by 
description, at once into a proto-cell with a carapace. It is this protocell that then 
undergoes mitosis in the next two rounds of description. The cell-division or mitosis is 
enabled by the production of new carapace (]OOO[ → ]O[=]O[) from within the cell. It is 
important to note that this production does not come from an inner mechanism of the 
cell, but rather from the global recursive/descriptive situation of these entities in the 
entire line of the RD structure. It is the influence of the surrounding void that makes all 
this happen in the course of recursive description and distinction. It is a fortuitous 
accident of working in one dimension that the carapace is seen in a left portion paired 
with a right portion, analogous to the two strands of the DNA. At this condensed 
creation scenario, we find that the patterns of DNA replication, cell formation, and 
mitosis all appear at once in the first few steps away from a marking (B) in the void (of 
repeated As). 

For DNA replication, we can interpret the correspondence as: 

1. ] = Watson, [ = Crick, O = backbone or binding. 
2. RD action results in the opening of the backbone so that binding O is replaced by 

environment OOO. 
3. RD action relative to the environment results in the placement of a new Watson 

and a new Crick. So we have the self-replication of ]O[. 

Note that there is another level at which we can think about this! Regard ] and [ as cell 
walls. Then we are witnessing not DNA reproduction, but mitosis itself! The little fellow 
]O[ is a cell and we are watching how it reproduces in the line environment 
============= of the void where there are no distinctions. The reader should now 
look again at Figure 3 and note the many appearances and interactions related to this 
elementary cell. 

Of course the interpretations of backbone, strand, environment, and cell are different 
from what happens in the biology, but it is very interesting that the basic principles are 
similar. 

Note how we get …===]OOOOO… goes to …==]O[===… So actually the whole 
environment flips here. But it is contained in the above scenario. Everything that 
happens in RD is non-local, since a single event affects the whole string. 

Perhaps it is clear to the reader that RD in the sense of this section is a potentially 
explosive topic that will grow to influence all the aspects of biology and computing. We 
believe that this is the case. The principle of [distinction/description in recursive process] 
applies at all levels of biology, cognition, information science, and computing. 
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7. Maturana, Uribe, and Varela and the Game of Life 
Some examples from cellular automata clarify many of the issues about replication and 
the relationship of logic and biology. Here is an example due to Maturana, Uribe, and 
Varela. 15  The ambient space is two dimensional and in it there are “molecules” 
consisting of “segments” and “disks” (the catalysts; see Figure 62). There is a minimum 
distance between the segments and the disks (one can place them on a discrete lattice 
in the plane). And “bonds” can form with a probability of creation and a probability of 
decay between segment molecules with minimal spacing. There are two types of 
molecules: “substrate” (the segments) and “catalysts” (the disks). The catalysts are not 
susceptible to bonding, but their presence (within say three minimal step lengths) 
enhances the probability of bonding and decreases the probability of decay. Molecules 
that are not bonded move about the lattice (one lattice link at a time) with a probability of 
motion. In the beginning, there is a randomly placed soup of molecules with a high 
percentage of substrate and a smaller percentage of catalysts. What will happen over 
the course of time? 

 
Figure 62: Proto-Cells of Maturana, Uribe, and Varela 

In the course of time, the catalysts (which are basically separate from one another due 
to lack of bonding) become surrounded by circular forms of bonded or partially bonded 
substrate. A distinction (in the eyes of the observer) between inside (near the catalyst) 
and outside (far from a given catalyst) has spontaneously arisen through the “chemical 
rules.” Each catalyst has become surrounded by a proto-cell. No higher organism has 
formed here, but there is a hint of the possibility of higher levels of organization arising 
from a simple set of rules of interaction. The system is not programmed to make the 
proto-cells. They arise spontaneously in the evolution of the structure over time. 

8. Conway Life 
One might imagine that organisms could be induced to arise as the evolutionary 
behavior of formal systems. There are difficulties, not the least of which is that there are 

                                            
15 H. R. Maturana, R. Uribe, and F. G. Varela, “Autopoesis: The Organization of Living Systems, Its 
Characterization and a Model,” Biosystems 5 (1974): 7-13. See also F. J. Varela, Principles of Biological 
Autonomy (New York: North Holland Press, 1979) for a global treatment of related issues.  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nearly always structures in such systems whose probability of spontaneous emergence 
is vanishingly small. A good example is given by another automaton – John H. 
Conway’s Game of Life. In Life, the cells appear and disappear as marked squares in a 
rectangular planar grid. A newly marked cell is said to be born. An unmarked cell is 
dead. A cell dies when it goes from the marked to the unmarked state. A marked cell 
survives if it does not become unmarked in a given time step. According to the rules of 
Life, an unmarked cell is born if and only if it has three neighbors. A marked cell 
survives if it has either two or three neighbors. All cells in the lattice are updated in a 
single time step. The Life automaton is one of many automata of this type and indeed it 
is a fascinating exercise to vary the rules and watch a panoply of different behaviors. 

For this discussion, we concentrate on some particular features. There is a 
configuration in Life called a glider (see Figure 63), which illustrates a series of gliders 
going diagonally from left to right down the Life lattice, as well as a glider gun 
(discussed below) that has produced them. The glider consists of five cells in one of two 
basic configurations. Each of these configurations produces the other (with a change in 
orientation). After four steps, the glider reproduces itself in form, but shifted in space. 
Gliders appear as moving entities in the temporality of the Life board. The glider is a 
complex entity that arises naturally from a small random selection of marked cells on 
the Life board. Thus the glider is a naturally occurring entity, just like the proto-cell in the 
Maturana-Uribe-Varela automaton. 

 
Figure 63: Glider gun and gliders 

But Life contains potentially much more complex phenomena. For example, there is the 
glider gun (see Figure 63), which perpetually creates new gliders. The gun was invented 
by the Gosper Group, a group of researchers at MIT in the 1970s. It is highly unlikely 
that a gun would appear spontaneously in the Life board. Of course, there is a tiny 
probability of this, but we would guess that the chances of the appearance of the glider 
gun by random selection or evolution from a random state is similar to the probability of 
all the air in the room collecting in one corner. Nevertheless, the gun is a natural design 
based on forms and patterns that do appear spontaneously on small Life boards. The 
glider gun emerged through the coupling of the power of human cognition and the 
automatic behavior of a mechanized formal system. 

Cognition is, in fact, an attribute of our biological system at an appropriately high level of 
organization. Cognition itself looks as improbable as the glider gun! Do patterns as 
complex as cognition or the glider gun arise spontaneously in an appropriate biological 
context? 
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There is a middle ground. If one examines cellular automata of a given type and varies 
the rule set randomly rather than varying the initial conditions for a given automaton, 
then a very wide variety of phenomena will present themselves. In the case of molecular 
biology at the level of the DNA there is exactly this possibility of varying the rules, in the 
sense of varying the sequences in the genetic code. So it is possible at this level to 
produce a wide range of remarkable complex systems. 

9. Other Forms of Replication 
Other forms of self-replication are quite revealing. For example, one might point out that 
a stick can be made to reproduce by breaking it into two pieces. This may seem 
satisfactory on the first break, but the breaking cannot be continued indefinitely. In 
mathematics, on the other hand, we can divide an interval into two intervals and 
continue this process ad infinitum. For a self-replication to have meaning in the physical 
or biological realm, there must be a genuine repetition of structure from original to copy. 
At the very least, the interval should grow to twice its size before it divides (or the parts 
should have the capacity to grow independently). 

A clever automaton, due to Chris Langton, takes the initial form of a square in the plane. 
The square extrudes an edge that grows to one edge length and a little more, turns by 
ninety degrees, grows one edge length, turns by ninety degrees grows one edge length, 
turns by ninety degrees and when it grows enough to collide with the original extruded 
edge, cuts itself off to form a new adjacent square, thereby reproducing itself. This 
scenario is repeated as often as possible, producing a growing cellular lattice (see 
Figure 64). 

 
Figure 64: Langton’s automaton 

The replications that happen in automata such as Conway’s Life are all really instances 
of periodicity of a function under iteration. The glider is an example where the Life game 
function L applied to an initial condition G yields L5(G) = t(G) where t is a rigid motion of 
the plane. Other intriguing examples of this phenomenon occur. For example, the initial 
condition D for Life shown in Figure 65 has the property that L48(D) = s(D) + B where s 
is a rigid motion of the plane and s(D) and the residue B are disjoint sets of marked 
squares in the lattice of the game. D itself is a small configuration of eight marked 
squares fitting into a rectangle of size 4 by 6. Thus D has a probability of 1/735471 of 
being chosen at random as eight points from 24 points. 
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Figure 65: Condition D with geometric period 48 

Should we regard self-replication as simply an instance of periodicity under iteration? 
Perhaps, but the details are more interesting in a direct view. The glider gun in Life is a 
structure GUN such that L30(GUN) = GUN + GLIDER. Further iterations move the 
disjoint glider away from the gun so that it can continue to operate as an initial condition 
for L in the same way. A closer look shows that the glider gun is fundamentally 
composed of two parts P and Q such that L10(Q) is a version of P and some residue, 
and such that L15(P) = P* + B, where B is a rectangular block, and P* is a mirror image 
of P, while L15(Q) = Q* + B’ where B’ is a small non-rectangular residue. See Figure 66 
for an illustration showing the parts P and Q (left and right) flanked by small blocks that 
form the ends of the gun. One also finds that L15(B + Q*) = GLIDER + Q + Residue. This 
is the internal mechanism by which the glider gun produces the glider. 

 
Figure 66: P (left) and Q (right) compose the glider gun 

The extra blocks at either end of the glider gun act to absorb the residues that are 
produced by the iterations. Thus the end blocks are catalysts that promote the action of 
the gun. Schematically the glider production goes as follows: 

P + Q → P* + B + Q* 

B + Q* → GLIDER + Q 
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whence 

P + Q → P* + B + Q* → P + GLIDER + Q = P + Q + GLIDER. 

The last equality symbolizes the fact that the glider is an autonomous entity no longer 
involved in the structure of P and Q. It is interesting that Q is a spatially and time shifted 
version of P. Thus P and Q are really copies of each other in an analogy to the structural 
relationship of the Watson and Crick strands of the DNA. The remaining part of the 
analogy is the way the catalytic rectangles at the ends of the glider gun act to keep the 
residue productions from interfering with the production process. This is analogous to 
the enzyme action of the topoisomerase in the DNA. 

The point about this symbolic or symbiological analysis is that it enables us to take an 
analytical look at the structure of different replication scenarios for comparison and for 
insight. 

There are a number of variants of Conway Life. We have earlier in this paper discussed 
HighLife and its self-replicator, whose pattern is a direct relative to the self-replicator in 
the 1D RD. Kauffman discussed another variant of Conway Life16 and denoted it by the 
name 7-Life in that paper. The generative rule for 7-Life is B37/S23, meaning that an 
empty square gives birth to a marked square if it has either three neighbors or seven 
neighbors, and a marked square survives to the next generation if it has either two or 
three neighbors. Conway Life is defined by the distinction B3/S23. In Conway Life, one 
has gliders that occur naturally and we have discussed the glider gun that emerged 
from a design interaction with computer experiments using Conway Life. However, 7-
Life behaves differently from Conway Life. There are still naturally occurring gliders, but 
relatively small initial configurations tend to behave dynamically, interacting via the 
gliders to produce self-sustaining, slowly growing configurations. These configurations 
can eventually give birth to more complex self-reproducing entities.17 The entity that 
emerges, usually after thousands of iterations, is more complex (a pair of mirror-imaged 
configurations) than the glider, but by our experience, not so improbable as never to 
emerge! This leads to the question of the possibility and probability of the emergence of 
complex structures, analogous to biological structures, in the forward history of an RD 
automaton. We mention the cases of non-orthodox RD and experiments of this kind 
since structurally, all these automata do operate recursively on the basis of distinctions 
made at each step. The variants of Conway Life and the Wolfram automata are all very 
simple instances of RD where the basic language is binary and there is only one 
distinction made at each step. 

10. Laws of Form 
In this section, we discuss a formalism of G. Spencer-Brown in his book Laws of 
Form, 18 which is often called the calculus of indications. This calculus is a study of 
mathematical foundations with a topological notation based on one symbol, the mark 

                                            
16 Kauffman, “Reflexivity and Eigenform.” 
17 Ibid. 
18 G. Spencer-Brown, Laws of Form (New York: Julian Press, 1969). 
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. 

This single symbol represents a distinction between its own inside and outside. The 
mark is seen as making a distinction, and the calculus of indications is a calculus of 
distinctions, where the mark refers to the act of distinction. The mark is self-referential 
and refers to its own action and to the distinction that is made by the mark itself. 
Spencer-Brown is quite explicit about this identification of action and naming in the 
conception of the mark, and by the end of the book he reminds the reader that “the 
mark and the observer are, in the form, identical.” We make this discussion here 
because it is important to trace the origins of the idea of distinction that is so central to 
the present paper. 

The concept of distinction as used in Laws of Form is very close to that used implicitly in 
set theoretic mathematics. There the fundamental distinction is represented by set 
brackets (the act of collecting into a set) and the empty set { } is the first distinction. 

In the calculus of indications, the mark can interact with itself in two possible ways. The 
resulting formalism becomes a version of Boolean arithmetic, but fundamentally simpler 
than the usual Boolean arithmetic of 0 and 1 with its two binary operations and one 
unary operation (negation). 

Remarkably, the calculus of indications provides a context in which we can say exactly 
that a certain logical particle, the mark, can act as negation and can interact with itself to 
produce itself. 

The mathematics in Laws of Form begins with two laws of transformation about these 
two basic expressions. Symbolically, these laws are: 

1.  Calling  

2.  Crossing  

The equals sign denotes a replacement step that can be performed on instances of 
these patterns (two empty marks that are adjacent or one mark surrounding an empty 
mark). In the first of these equations, two adjacent marks condense to a single mark, or 
a single mark expands to form two adjacent marks. In the second equation, two marks, 
one inside the other, disappear to form the unmarked state indicated by nothing at all. 
That is, two nested marks can be replaced by an empty word in this formal system. 
Alternatively, the unmarked state can be replaced by two nested marks. These 
equations give rise to a natural calculus, and the mathematics can begin. For example, 
any expression can be reduced uniquely to either the marked or the unmarked state. 
The following example illustrates the method: 
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The general method for reduction is to locate marks that are at the deepest places in 
the expression (depth is defined by counting the number of inward crossings of 
boundaries needed to reach the given mark). Such a deepest mark must be empty and 
it is either surrounded by another mark, or it is adjacent to an empty mark. In either 
case, a reduction can be performed by either calling or crossing. 

Laws of Form begins with the following statement. “We take as given the idea of a 
distinction and the idea of an indication, and that it is not possible to make an indication 
without drawing a distinction. We take therefore the form of distinction for the form.” 
Then the author makes the following two statements (laws): 

1. The value of a call made again is the value of the call. 
2. The value of a crossing made again is not the value of the crossing. 

The two symbolic equations above correspond to these statements. First, examine the 
law of calling. It says that the value of a repeated name is the value of the name. In the 
equation 

 
one can view either mark as the name of the state indicated by the outside of the other 
mark. In the other equation 

 
the state indicated by the outside of a mark is the state obtained by crossing from the 
state indicated on the inside of the mark. Since the marked state is indicated on the 
inside, the outside must indicate the unmarked state. The Law of Crossing indicates 
how opposite forms can fit into one another and vanish into nothing, or how nothing can 
produce opposite and distinct forms that fit one another, hand in glove. The same 
interpretation yields the equation 

 
where the left-hand side is seen as an instruction to cross from the unmarked state, and 
the right hand side is seen as an indicator of the marked state. The mark carries a 
double meaning. It can be seen as an operator, transforming the state on its inside to a 
different state on its outside, and it can be seen as the name of the marked state. That 
combination of meanings is compatible in this interpretation. 

From the calculus of indications, one moves to algebra. Thus 

 
stands for the two possibilities 
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In all cases we have 

 
By the time we articulate the algebra, the mark can take the role of a unary operator 

 
But it retains its role as an element in the algebra. Thus begins algebra with respect to 
this non-numerical arithmetic of forms. The primary algebra that emerges is a subtle 
precursor to Boolean algebra. One can translate back and forth between elementary 
logic and primary algebra: 

1.  

2.  

3.  

4.  

5.  
6.  

The calculus of indications and the primary algebra form an efficient system for working 
with basic symbolic logic. 

By reformulating basic symbolic logic in terms of the calculus of indications, we have a 
ground in which negation is represented by the mark and the mark is also interpreted as 
a value (a truth value for logic) and these two interpretations are compatible with one 
another in the formalism. At this point the reader can appreciate what has been done if 
he or she returns to the usual form of symbolic logic. In that form we see that 

∼∼ X = X 

for all logical objects (propositions or elements of the logical algebra) X. We can 
summarize this by writing 

∼∼ = 
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as a symbolic statement that is outside the logical formalism. Furthermore, one is 
committed to the interpretation of negation as an operator and not as an operand. The 
calculus of indications provides a formalism where the mark (the analog of negation in 
that domain) is both a value and an object, and so can act on itself in more than one 
way. 

The mark as linguistic particle is its own anti-particle. It is exactly at this point that 
physics meets logical epistemology. Negation as logical entity is its own anti-particle. In 
our view, the world and the formalism we use to represent the world are not separate. 
The observer and the mark are (formally) identical. A path is opened between logic and 
physics. 

The visual iconics that create via the half-boxes of the calculus of indications a model 
for the mark as logical particle can also be seen in terms of cobordisms of surfaces (see 
Figure 67). There the boxes have become circles and the interactions of the circles 
have been displayed as evolutions in an extra dimension, tracing out surfaces in three 
dimensions. The condensation of two circles to one is a simple cobordism between two 
circles and a single circle. The cancellation of two circles that are concentric can be 
seen as the right-hand lower cobordism in this figure with a level having a continuum of 
critical points where the two circles cancel. A simpler cobordism is illustrated above on 
the right where the two circles are not concentric, but nevertheless are cobordant to the 
empty circle. Another way of putting this is that two topological closed strings can 
interact by cobordism to produce a single string or to cancel one another. Thus, a 
simple circle can be a topological model for the mark, for the fundamental distinction. 

 
Figure 67: Calling, crossing, and cobordism 

We are now in a position to discuss the relationship between logic and quantum 
mechanics. We go below Boolean logic to the calculus of indications, to the ground of 
distinctions based in the phenomenology of distinction arising with the emergence of 
concept and percept together, in the emergence of a universe in an act of perception. 
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Here we find that the distinction itself is a logical particle that can interact with itself to 
produce itself, but can also interact with itself to annihilate itself. The fundamental state 
is a superposition of these two possibilities for distinction. We are poised between 
affirmation of presence and the fall into an absence that we cannot know. This 
superposition is likely not yet linear in the sense of the simple model of quantum theory. 
Nevertheless, it is at this source, the place of arising and disappearing of awareness, 
that we come close to the quantum world in our own experience. As always, this 
experience is known to us in ways more intimate than the reports of laboratory 
experiments. It is the uniqueness of every experience, of every distinction. There can be 
no other one. There is only this and this and this yet again. 

Nevertheless, one can go on and consider quantum states related to the 
aforementioned logical particle. Crossing this boundary into quantum theory proper, one 
finds that topology and physics come together in this realm, and there is a complex 
possibility of much new physics to come and a new basis for quantum computing.19 It 
will take more thought and a sequel to this paper to begin to sort out the relationships 
between quantum theory and RD at the level of this form of epistemology. 

Remark. In Laws of Form we can express XOR(A, B) = AB = BA by the formula 

 
Note that if B is marked, then 

 
Thus the operation of XOR is the action of the mark itself. We can regard diagrammatic 
circuits such as we used in Figure 6 as applications of the mark in the form of the XOR 
operation above. In this way, the apparently awareness-dependent operations of the 
Laws of Form shift to the automatic discrimination capabilities of computer circuits and 
the forms of RD can be seen as written in the language of the calculus of indications. 
These points of view inform each other circularly. 

11.  Commentary 
Here is a collection of remarks and insights into RD that come from conversations 
between the authors of this paper over a number of years. 

1. Joel: When distinction-making is applied to a pattern there is a new pattern that is 
comprised of the variety of distinctions recorded. Thus, a new pass of distinction-
making can be applied to the pattern of distinctions, and this kind of a process can 
repeat itself recursively, indefinitely. 

                                            
19 For further details, see Louis H. Kauffman. “Knot Logic and Topological Quantum Computing with 
Majorana Fermions,” in Logic and Algebraic Structures in Quantum Computing and Information: Lecture 
Notes in Logic, ed. J. Chubb, Ali Eskandarian, and V. Harizanov (Cambridge: Cambridge University 
Press, 2016), 223-336. 
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2. Joel: I had made a discovery (mathematical in nature) of processes of RD (which is 
not patentable per se), and then invented a physical embodiment that performs 
these processes. 

3. Joel: The sensing of gradients (chemical concentrations, nutrients, etc.) in bacteria is 
well established and demonstrable. These are elements of distinction-making at very 
primitive levels. It is much harder to demonstrate recursive distinction-making in 
bacteria, because these are more abstract operations. It can be done however with 
live neuron circuits, and about 250K separate us now from results of such a demo. 

Eshel Ben-Jacob proposed that recursive distinction-making may be easier to 
demonstrate in genetic/immunological systems and it would also be much cheaper 
than the work planned with neurons. I am waiting for more details. At any rate, 
Eshel’s program is all interrelated, with recursive distinction-making being a unifying 
theme. 

4. Joel: I tend to think in terms of sensory-driven cognition that is constructed bottom-
up, beginning with Stage 1 – sensory distinctions; and proceeds to Stage 2 – 
indefinite recursion that starts out from Stage 1 and builds up successive layers of 
distinctions-of-distinctions. It is unlikely that these two low-level stages involve 
awareness. A working hypothesis is that some sort of awareness emerges from the 
primitive Stages 1 and 2 towards a level that you identified as Type 1. So, basically I 
tend to think of your Type 1 as an epiphenomenon that arises from Stages 1 and 2. 
[Type 1 for LK is a distinction that comes simultaneously with an awareness of that 
distinction.] I believe (actually I have shown) that Stages 1 and 2 are mechanizable. 
A missing link, of course, is the transition from Stages 1 and 2 to your Type 1. I am 
very sympathetic to constructivist dispositions and the place of human beings in the 
order of things. I agree that thought thinking itself is all we have got … but I see no 
contradiction in proposing that thought processes have their ultimate genesis in pre-
cognitive and pre-aware primitive processes of sensory-driven RD. 

5. Joel: Spencer-Brown has been very seductive to a lot of people and rightfully so. For 
most of us, drawing a distinction is a cognitive act that is performed by a full-blown 
human being. Spencer-Brown, of course, represents a distinction by some sketching 
of circles on a piece of paper by a human. I don’t object to this! That’s how much of 
mathematics is done. Scribbling of some symbols, sometimes in reference to some 
drawings of geometric or topological configurations. But doubts linger. Is it possible 
to entertain a situation where distinctions are drawn by acts that are short of being 
cognitive? And if this is possible, where is the observer, the self? And what 
constitutes the other? What will happen to the expected dynamics of “I and Thou”? 
Will there emerge a “becoming”? Becoming of what? It seems utterly futile to 
concoct a scenario of distinction-making at a level that is well below a cognizing per- 
son. (And what’s left of constructivism if the cognizing person is dissolved to his 
sensory modalities?) [LK: Note that Spencer-Brown never discusses how 
distinctions arise but always discusses distinctions that are accompanied by an 
awareness or an observer.] 



Journal of Space Philosophy 5, no. 1 (Spring 2016) 

58 
 

Well, the thing is this. Sensory modalities, all of them, must make local distinctions in 
certain features (e.g., intensities) in signals that impinge on them. It has been 
studied in great detail in visual perception, beginning with the retina. Photoreceptors 
in the retina make local distinctions of light intensities that impinge on the retina. 
(Absent this, capacity for local distinctions amounts to blindness.) This local 
distinction-making is accomplished by comparisons that ultimately cause firing/non-
firing. These processes involve certain physiological/biochemical processes, in 
conjunction with massive neural circuits. The above type activity is clearly pre-
cognitive, involuntary, and (with sufficient abstraction) can be accomplished by 
computing machines as well. 

The essence of my patent document is RD (in one-dimension; but it is motivated 
directly by RD in 2D, which operates on 2D digital imager; 2D RD is abstracted from 
local distinction-making at the retinal level, as worked out by Weisel and Hubel in the 
early 1960s). 

I recently sketched for the history of my ideas (beginning in the early 1960s) and 
how these are embedded in the patent document, including the basis for fantomarks 
and their streaks. 

I think that the singular contribution of my particular RD processes is operationalizing 
the process of recursion on distinction-making. For it gives precise and detailed 
trace of what it entails, including an emergent dialectics, circularity, and so on. 

To be sure, other people have talked about recursive distinction-on-distinction 
(notably Maturana, in the context of his much higher-level “languaging”), but it 
should be clear that my RD is at a precognitive level, is mechanizable, and affords a 
thorough examination of its emergent properties. 

6. Joel: I noticed that thing – the hypothetical distinction (or contingent distinction) that 
hasn’t actually been made. It exemplifies the potency of distinction, even if not acted 
upon. These are the wonders of distinction, actual, virtual, potential, contingent, and 
hidden, to name only a few types. Now, when these are compounded via recursion – 
watch out!  

7. Joel: I have no objection to make a (provisional) distinction between the kind of 
distinction in RD automata and the Maturana and Varela kind of distinction. In itself, 
this act of distinction between two distinctions is a good example of what RD 
automata typically do. I think that, in the end, we’ll mutually discover that the 
distinction between the two kinds of distinctions will gradually dissolve. 

Here is a succinct description of the roles of distinction in RD automata: In RD 
automata, we have two basic elements that involve notions of distinction. 

1. An element of distinction-making. This element involves acts of distinguishing 
(verb) and is a process. 
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2. The results of distinctioning are a collection of distinctions; where a distinction is 
a product, object (noun). 

Usually these objects form a pattern of distinctions (the pattern as a whole is also an 
object) that is subject to further acts of distinctioning. 

Thus process and products alternate, recursively, where both process and products 
involve notions that relate to distinction. 

The process element involves distinction-making; and the product element is a 
pattern of objects, referred to as distinctions. (Each such distinction is a local, 
fragmentary boundary that records the result of prior acts of distinctioning.) 

It is crucial to understand that the alternation between process/product is recursive 
and indefinite in duration; also, that such indefinite recursion is guaranteed to drive 
the process into circularity. This, as a whole, represents the notion of RD in RD 
automata. (It is called BIP in the patent.) 

The RD automata model is motivated by natural vision. The initial stages are 
motivated by the retina, and the rest of the recursive process is postulated to take 
place in the lateral geniculate nucleus (LGN) and the visual cortex proper. 

In recent years, some researchers in advanced techniques in neural circuits (not 
artificial neural nets, but rather actual, live neural tissue) have entertained the 
hypothesis that a certain version of RD automata takes place in normal brain tissue 
activity. 

8. Joel: This is to systematize RD by dimension. 

* 1D – This is the case that is documented in the patent. It was pre-dated by the 2D 
case. A neighborhood comprises three elements, where a central element has two 
neighbors. There are exactly four combinations of relationships between an element 
and its two neighbors, representable by four ideographs, as described in the patent. 

* 2D – This is the case that relates to image processing; it goes back to 1964. A 
neighborhood (Moore neighborhood) is comprised of nine elements, where a central 
element has eight neighbors. There are exactly 256 combinations of relationships 
between a central element and its eight neighbors. These are representable by 256 
ideographs. 

The 2D case can be decomposed into a network of 1Ds. For comparison, John 
Conway’s Game of Life is also run on a Moore neighborhood but has only two states 
(as compared to 256 [!] states in the Game of RD). The richness and complexity of 
Game of Life is well known. Imagine the complexity of this 2D RD game. 

* 3D – A neighborhood is comprised of 27 elements, where a central element has 26 
near neighbors. There are exactly 226 (i.e., 67,108,864) combinations of 
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relationships between a central element and its 26 near-neighbors. Clearly, I didn’t 
investigate this case. Instead, I retreated to the 0D case; see below. 

* 0D – This is the case where RD starts with a single speck against the void. It yields 
the scenario of the baryon octet, as described elsewhere. 

9. Joel and Lou: Your comment is interesting. There are RD processes that are 
uniquely in the purview of human observers. There are certain RD processes that 
can be performed by automata, and there may also be RD processes in nature. The 
challenge is to integrate all three types into an encompassing framework whose 
unifying theme is RD processing. As to experimenting with CA, there are obviously 
untold numbers of possible CA, some of which have extremely interesting behaviors. 
In RD we focus on a singular cellular automaton, the one CA whose rule is recursive 
distinction-making. Once we grasp that distinction-making is a unique operation (in 
regards to perception and cognition) we realize that we must focus on the particular 
class of RD automata, in preference to the other zillions of CA possibilities that are 
available for our consideration and entertainment. I submit that RD automata are the 
needles in the haystack of CA. 

10. Lou: In programs that we design the initial automatic distinctions are distinctions that 
are put in by design. In the observation of such programs new distinctions arise for 
us, that can be used for further designs. But in nature, it is not obvious how those 
structures that we are calling distinction operators have arisen. We do not imagine 
that they occur by design. We do not imagine that they were ideas in the mind of a 
designer. I am very aware of this issue. as I have experimented at other levels with 
cellular automata and have seen how by varying rule structures one can find 
extraordinary recursive structures that one would never have imagined. Our 
relationship with our own constructions and with nature is complex. 

11. Joel: Transdistinction operates on patterns of raw sensory data to produce a first 
pass of local distinction-making in such patterns. Further processing is relegated to 
higher centers in the nervous system. (For example, this is essentially what the 
retina does [in part] in vision.) This first pass is relatively easy to accomplish by 
computing devices. Thus, impairment in a sensory organ can be overcome by using 
such prosthetic devices. The next issue, of course, is how to connect the output of 
the prosthetic device to higher centers. In vision, for example, a connection needs to 
be done to the optic nerve, or directly to the lateral geniculate nucleus, from which 
the normal vision pathways would be followed to the visual cortex. Assuming that 
such devices will become reality, would it modify our notion of the observer? Namely, 
a human observer so equipped would initiate his or her observation by an automatic 
device that does distinction-making. So, there you have it – a hybrid of 
human/machine in a long sequence of distinction-making; some automatic and some 
human-based. 

12. Joel: Yes, quids and quods seem to be generalized notions of containers/extainers.  
[Lou: Extainers have the formalism E = >< while containers have the formalism C = 
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<>.] Extainers are open to interaction from the outside. Containers are closed forms 
not likely to interact. But note that 

EE = ><>< = > C < 

and 

CC = <><> = < E >. 

Thus an extainer interacts with an extainer to produce a container, and a container 
interacts with a container to produce an extainer. We can distinguish between 
containers and extainers by allowing containers to move freely (commute) with other 
elements. Then 

EE = > C < = C >< = CE 

and we see that C can be the catalyst for self-replication. And if we regard the 
extainer as the environment, then the movement 

<> → < E > 

can be seen as our earlier abstraction of the emergence of Watson and Crick 
strands from the environment. We obtain the self-replication of DNA type: 

<> → < E > → <><>.20 

Inasmuch as quids and quods come about literally out of nowhere (they are 
byproducts of RD that operates on arbitrary initial unspecified things, including 
fantomarks), their natural algebra may be significant. 

Quids and quods (discrete/continuous) are self-organized. They enter into an 
elaborate dance that is not choreographed by external manipulation. The dance has 
classical dialectical patterns. 

Replication is part of the game. There are at least two types of replication: 

1. For RD with fixed boundaries, there is guaranteed circularity. Thus a whole bunch 
of strings are periodically replicated. These happen to be 4-letter strings with 
certain complementarity properties. Close enough to DNA, but not quite the 
same. 

2. For RD with shifting extainers (such as in the Baryon Octet scenario), there is 
replication of patterns via self-similarity in the trace. In effect, a basic pattern 
reappears periodically. 

                                            
20 See Kauffman, “Iterants, Fermions, and Majorana Operators”; Kauffman, “Biologic”; and Kauffman, 
“Self-Reference, Biologic and the Structure of Reproduction” for more about extainers and containers. 
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All in all, I propose to consider the algebra of quids/quods (which extends your [Lou 
K.]) notions of containers/extainers) somewhere at the foundations of your 
marvelous edifice. 

There is an example of this in Figure 2 on page 11 of my paper “Steganogramic 
Representation of the Baryon Octet in Cellular Automata.” This is an RD that starts 
out with a first arbitrary distinction. Focus on lines 1 thru 8. 

‘0’ is like your container that fuses <> together. It may contain at most one thing. 
There is a notion of extended container, written: < * … * >, which may contain a 
bunch of things. (It shows in Figure 2 as [==== … =]: C is an element of quids, and 
the extended container is a quod, as defined in the patent document.) Now, make 
the following substitutions in Fig. 2: 

0 is C 

] is > 

[ is < 

= is * 

Lines 1 thru 8 will look like this: 

>C< 

>CCC< 

>C<*>C< 

>CCCCCCC< 

>C<*****>C< 

>CCC<***>CCC< 

>C<*>C<*>C<*>C< 

>CCCCCCCCCCCCCCC< 

and you can continue thru line 16 and beyond. Within that 16-line diagram you can 
identify 10 configurations that look like this: 

>C< 

CCC 

<*> 
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Those 10 configurations are self-organized similarly to the Pythagorean Tetractys.21 
Those configurations allow us to uncover the configuration of the baryon octet that is 
embedded therein.22 

Thus the physical interpretation of > and < are up and down quarks and * is a 
strange quark. 

Let’s recoup what we’re doing. We start out with a first distinction and apply RD to it. 
We develop the trace of a cellular automaton that does RD. Within that trace we 
discover the Pythagorean Tetractys, within which we discover the eight particles of 
the baryon octet expressed in terms of their constituent quarks. Note: There ought to 
be a link to SU(3), which still eludes me. 

13. Lou: Clearly we have just begun this study. There is much more to come. 

Copright © 2016, Louis Kauffman and Joel Isaacson. All rights reserved. 
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21 Isaacson, “Steganogramic Representation,” Figure 3, p. 12. 
22 Ibid., Figure 7, p. 16. 
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Editors’ Notes: The Board of Directors of Kepler Space Institute (KSI) and the editors 
of the Journal of Space Philosophy take pride in providing the publication platform for 
Dr. Joel D. Isaacson and Dr. Louis H. Kauffman to inform the public on the current 
status of RD. That term is the scientific description of “Nature’s Cosmic Intelligence” 
(Joel Isaacson, Journal of Space Philosophy 1, no. 1 [Fall 2012]: 8-16) that Dr. Isaacson 
discovered in 1964, Since that date he has been the lead scientist and scholar in 
researching this information stream phenomenon that Dr. Bernd Schmeikal – whose 
supporting paper is also in this Special Science Issue of the Journal of Space 
Philosophy – has called “a universal creative system.” Dr. Isaacson described RD in 
April 2011 as “a finding that is advanced as a law of nature, perhaps on the par of 
gravity.” Over the past two years, Dr. Louis Kauffman, one of America’s most 
distinguished mathematicians and physicists, has worked intensively with Dr. Isaacson 
to create this latest scientific explanation for the world. For further information on RD, 
see homepages.math.uic.edu/~kauffman/RD.html. Bob Krone and Gordon Arthur. 

http://homepages.math.uic.edu/%7Ekauffman/RD.html
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