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DEDICATION 
By the Kepler Space Institute Board of Directors 

This special science issue of the Journal of Space Philosophy is dedicated to Earth’s 
space scientists, who have brought humanity, through their sciences, to the brink of the 
Space Epoch. That epoch will contain new worlds for humans holding the promise of 
improvements and survival for our species beyond our current imaginations. The feature 
article in this Spring 2016 issue of the Journal of Space Philosophy, “Recursive 
Distinctioning,” by scientists Joel D. Isaacson and Louis H. Kauffman, is a major addition 
to this historic legacy. 

This issue is also dedicated to the memory of Eshel Ben-Jacob whose recursive creativity 
has halted abruptly and whose ideas continue to dwell in these pages. The picture at the 
bottom of the page is of actual bacteria colonies that Eshel used to refer to as “bacteria 
art.” He and Joel Isaacson made the tacit assumption that bacteria use RD for their 
intelligence and organization. 
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Preface 

By Bob Krone and Gordon Arthur 

This Special Science issue of the Journal of Space Philosophy is a catalyst for us to 
reflect on the five years we have been editing the Journal for you readers. 

It was a surprise in 2012 that the global Space community had not created a journal of 
philosophy when most of the hard and soft sciences had done so long in the past. The 
Journal has given us in the Kepler Space Institute (KSI) a tangible academic product 
while we planned for the future. We did that planning without external funding, which 
meant that KSI Board and other members were funding their own participation in Space 
Conferences and our operations.  

We decided to publish our KSI agreed Space philosophy in the first issue, Fall 2012. Its 
fundamentals are: 

• veneration for life; 
• within ethical civilizations; 
• implemented by the Policy Sciences. 

Over the past five years, we have found no reason to change those fundamentals. 
Many of the articles published since 2012 provide the details of that philosophy. 

The research area we take great pride supporting is the ongoing discoveries and 
analysis of the Recursive Distinctioning (RD) natural intelligence feature discovered in 
1964 by Dr. Joel Isaacson. Louis H. Kauffman, PhD, University of Illinois at Chicago, 
presented the latest scientific findings on RD at the National Space Society’s 
International Space Development Conference in Puerto Rico, May 18-22, 2016 (ISDC-
2016), using the feature paper in this issue, “Recursive Distinctioning,” by Joel D. 
Isaacson and Louis H. Kauffman, as a basis for his remarks. 

Recursive Distinctioning is fundamental to all perception, and, by 
extension, to cognition and intelligence. That finding is advanced as a law 
of nature, perhaps on a par with gravity. (Joel Isaacson, e-mail to Bob 
Krone, April 20, 2011) 

This Special Science Issue is devoted exclusively to enhancing global awareness of 
Recursive Distinctioning and its implications for the future of humanity on Earth and in 
Space. 
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The original cover for this Special Science RD Issue was designed by Naté Sushereba 
and Joe Sobodowski, both members of the Kepler Space Institute Board of Directors 

Bob Krone, PhD, Editor-in-Chief 
Gordon Arthur, PhD, Associate Editor 
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PRESS RELEASE 
June 30, 2016 

By Gordon Arthur 

Kepler Space Institute has released the latest edition of the Journal of Space Philosophy. 
The Spring 2016 issue, its first Special Issue, focuses on the work of Joel Isaacson and 
Louis Kauffman on Recursive Distinctioning (RD). It begins with an introduction to the 
concepts of RD by Bob Krone, and then has two feature articles: “Recursive 
Distinctioning,” by Joel Isaacson and Louis Kauffman, and “Basic Intelligence Processing 
Space,” by Bernd Schmeikal. 

Isaacson and Kauffman’s paper explains how very simple operations, such as substituting 
letters in a specialized alphabet for letters in a word or other symbols by drawing 
distinctions between different conditions, can lead to surprisingly complex, recurring 
patterns. They then explain how some of the most fundamental principles of physics, 
biology, and symbolic logic can be written and manipulated in this way. Bernd Schmeikal 
then applies this to certain problems in theoretical physics. 

In the words of Joel Isaacson, RD “is fundamental to all perception, and, by extension, to 
cognition and intelligence. That finding is advanced as a law of nature, perhaps on a par 
with gravity” (e-mail to Bob Krone, April 20, 2011). In the word of Bob Krone, Editor-in-
Chief of the Journal of Space Philosophy, this issue “will surely be the most important 
issue to date” (e-mail to Gordon Arthur, March 16, 2016). 
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Notes from the Chair 
By Gordon Holder, VADM, US Navy (Ret), Kepler Space Institute Chairman of the 
Board 

The Board of Directors, Staff, and Members of Kepler Space Institute (KSI) take special 
pride as this Spring 2016 issue of the Journal of Space Philosophy is published. 

At the International Space Development Conference in Puerto Rico, May 18-22, 2016 
(ISDC-2016) Louis H. Kauffman, PhD, University of Illinois at Chicago, presented the 
latest scientific findings on Nature’s Cosmic Intelligence, scientifically identified as 
Recursive Distinctioning (RD). His primary reference was this Special Issue’s feature 
paper, “Recursive Distinctioning,” by Joel D. Isaacson and Louis H. Kauffman. 

Our KSI leadership has had a close long personal association with Dr. Joel D. Isaacson, 
who discovered the RD phenomenon in the 1960s and has been the lead scholar-
scientist in its definition and research ever since. He stated that RD is a fundamental 
part of perception, cognition, and intelligence, and he suggested that this idea is “a law 
of nature, perhaps on a par with gravity” (e-mail to Bob Krone, April 20, 2011). 

The important scientific paper co-authored by Dr. Isaacson and Dr. Louis H. Kauffman 
in this Special Science issue of the Journal captures the current understandings and 
implications of the RD intelligence reality, which may have existed from the Big Bang 
and which is hypothesized to be equally prevalent in the universe to Energy – Albert 
Einstein’s legacy – and to Gravity – Sir Isaac Newton’s legacy. 

We consider this to be the most important scientific issue to date of the Journal of 
Space Philosophy. 
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Recursive Distinctioning: The Root of Nature’s Cosmic Intelligence 

By Bob Krone, Ph.D., Editor-in-Chief, Journal of Space Philosophy 

I have been asked to describe for readers, in layperson terms, Recursive Distinctioning 
(RD), the scientific term for a fundamental natural process in the universe discovered by 
Dr. Joel D. Isaacson at Goddard Space Flight Center in 1964. Readers not familiar with 
astrophysics, cybernetics, or advanced mathematics must realize that attempts to 
describe complex space phenomena in non-scientific terms are bound to misrepresent 
their substance. For example, putting Einstein’s 1915 Theory of General Relativity into 
the popular vernacular remains a dilemma even today. 

“Nature’s Cosmic Intelligence,” the title of Dr. Isaacson’s article in the Fall 2012 issue of 
the Journal of Space Philosophy,1 is the best short description we have today. The 
origin of RD as a natural phenomenon is unknown. We can hypothesize that it began 
with the Big Bang, but there will never be proof of just when it began. It was not 
discovered until 1964, because there had been no way of detecting it. Dr. Isaacson 
patented the RD process in 1981 and noted that it had a striking link to the Hegelian 
dialectic (i.e., thesis—antithesis—synthesis), which is believed to underlie patterns of 
human thought processes. RD processes are also generators of patterns of elementary 
particles, called baryons, described through their quark constituents, and RD also 
seems to be a blueprint for DNA replication. 

RD operates in what is called streak mode via recursion on units with boundaries that 
have distinctions from each other. RD is fundamental to human cognition and to other 
living things, including certain intelligent behaviors of bacteria. It may also be a universal 
mode of communication among diverse intelligent species in the universe. In the view of 
Dr. Louis H. Kauffman, Professor of Mathematics at the University of Illinois at Chicago, 
the properties of recursion and distinction underlie all of mathematics. RD combines 
distinction and recursion in a fundamental way, the consequences of which will be very 
important. RD work has evolved into a joint project between Joel D. Isaacson and Louis 
H. Kauffman. There is no demarcation line between their respective contributions in 
regards to RD per se. 

There are strong indications that RD is a basis for many developments in many fields, 
including computing artifacts that mimic natural intelligence. The potential for significant 
impacts of RD across many sciences and technologies remains to be identified through 
research. The discovery that our universe contains information and intelligence in a 
process that is basic also to human perception and cognition (i.e., thinking) is a 
paradigm shift in scientific knowledge. Dr. Isaacson and Dr. Kauffman are making a 
huge contribution to Cosmos understanding. Readers should also consult Bob Krone’s 
2014 article, “Isaacson 1980 Aspirational Statement – Space Exploration.”2 

Copyright © 2016, Bob Krone. All rights reserved. 

                                            
1 Journal of Space Philosophy 1, no. 1 (Fall 2012), 8-16. 
2 Journal of Space Philosophy 3, no. 1 (Spring 2014), 146-50. 
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Recursive Distinctioning 

By Joel Isaacson and Louis H. Kauffman 

Abstract 
In this paper we explore Recursive Distinctioning. 

Keywords: Recursive Distinctioning, algebra, topology, biology, replication, cellular 
automaton, quantum, DNA, container, extainer 

1. Introduction to Recursive Distinctioning 
Recursive Distinctioning (RD) is a name coined by Joel Isaacson in his original patent 
document1 describing how fundamental patterns of process arise from the systematic 
application of operations of distinction and description upon themselves. 2  Louis H. 
Kauffman has written several background papers on recursion, knotlogic, and biologic.3 

RD means just what it says. A pattern of distinctions is given in a space based on a 
graphical structure (such as a line of print, a planar lattice, or a given graph). Each node 

                                            
1 Joel D. Isaacson, “Autonomic String-Manipulation System,” US Patent 4,286,330, August 25, 1981, 
www.isss.org/2001meet/2001paper/4286330.pdf. 
2 See also Joel D. Isaacson, “Steganogramic Representation of the Baryon Octet in Cellular Automata,” 
archived in the 45th ISSS Annual Meeting and Conference: International Society for the System 
Sciences, Proceedings, 2001, www.isss.org/2001meet/2001paper/stegano.pdf; Joel D. Isaacson, “The 
Intelligence Nexus in Space Exploration,” in Beyond Earth: The Future of Humans in Space, ed. Bob 
Krone (Toronto: Apogee Books, 2006), Chapter 24, thespaceshow.files.wordpress.com/2012/02/ 
beyond_earth-ch24-isaacson.pdf; Joel D. Isaacson, “Nature’s Cosmic Intelligence,” Journal of Space 
Philosophy 1, no. 1 (Fall 2012): 8-16. 
3 Louis H. Kauffman. “Sign and Space,” in Religious Experience and Scientific Paradigms: Proceedings of 
the 1982 IASWR Conference (Stony Brook, NY: Institute of Advanced Study of World Religions, 1985), 
118-64; Louis H. Kauffman, “Self-reference and recursive forms,” Journal of Social and Biological 
Structures 10 (1987): 53-72; Louis H. Kauffman, “Special Relativity and a Calculus of Distinctions,” in 
Proceedings of the 9th Annual International Meeting of ANPA (Cambridge: APNA West, 1987), 290-311; 
Louis H. Kauffman, “Knot Automata,” in Proceedings of the 24th International Conference on Multiple 
Valued Logic – Boston (Los Alamitos, CA: IEEE Computer Society Press, 1994), 328-33; Louis H. 
Kauffman, “Eigenform,” Kybernetes 34, no. 1/2 (2005): 129-50; Louis H. Kauffman, “Reflexivity and 
Eigenform – The Shape of Process,” Constructivist Foundations 4, no. 3, (July 2009): 121-37; Louis H. 
Kauffman, “The Russell Operator,” Constructivist Foundations 7, no. 2 (March 2012): 112-15; Louis H. 
Kauffman, “Eigenforms, Discrete Processes and Quantum Processes,” Journal of Physics, Conference 
Series 361 (2012): 012034; Marius Buliga and Louis H. Kauffman, “Chemlambda, Universality and Self-
Multiplication,” in Artificial Life 14 – Proceedings of the Fourteenth International Conference on the 
Synthesis and Simulation of Living Systems, ed. Hiroki Sayama, John Rieffel, Sebastian Risi, René 
Doursat, and Hod Lipson (Cambridge, MA: MIT Press, 2014); Louis H Kauffman, “Iterants, Fermions, and 
Majorana Operators,” in Unified Field Mechanics – Natural Science Beyond the Veil of Spacetime, ed. R. 
Amoroso, L. H. Kauffman, and P. Rowlands (Singapore: World Scientific, 2015), 1-32; Louis H. Kauffman, 
“Biologic,” AMS Contemporary Mathematics Series 304 (2002): 313-40; Louis H. Kauffman, “Self-
Reference, Biologic and the Structure of Reproduction,” Progress in Biophysics and Molecular Biology 
119, no. 3 (2015): 382-409; Louis H. Kauffman, “Biologic II,” in Woods Hole Mathematics, ed. Nils 
Tongring and R. C. Penner, World Scientific Series on Knots and Everything, Vol. 34 (Singapore: World 
Scientific, 2004), 94-132; Louis H. Kauffman, “Knot Logic,” in Knots and Applications (Singapore: World 
Scientific, 1994), 1-110; Louis H. Kauffman, Knots and Physics, 4th ed. (Singapore: World Scientific, 
2012). 
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of the graph is occupied by a letter from some arbitrary alphabet. A specialized alphabet 
is given that can indicate distinctions about neighbors of a given node. The neighbors of 
a node are all nodes that are connected to the given node by edges in the graph. The 
letters in the specialized alphabet (call it SA) are used to describe the states of the 
letters in the given graph and at each stage in the recursion, letters in the SA are written 
at all nodes in the graph, describing its previous state. The recursive structure that 
results from the iteration of descriptions is called RD. Here is an example: we use a line 
graph and represent it just as a finite row of letters. The alphabet is SA = {=, [, ], O} 
where “ = ” means that the letters to the left and to the right are equal to the letter in the 
middle. Thus if we had AAA in the line then the middle A would be replaced by =. The 
symbol “[” means that the letter to the left is different. Thus in ABB the middle letter 
would be replaced by [. The symbol “]” means that the letter to the right is different. And 
finally the symbol “O” means that the letters both to the left and to the right are different. 
SA is a tiny language of elementary letter distinctions. Here is an example of this RD in 
operation where we use the proverbial three dots to indicate a long string of letters in 
the same pattern. For example, 

 AAAAAAAAAABAAAAAAAAAA  

is replaced by 

 =========]O[=========  

is replaced by 

 ========]OOO[========  

is replaced by 

 =======]O[=]O[======= . 

Note that the element ]O[ appears and that it has replicated itself in a kind of mitosis. 
See Figures 1 and 2 for a more detailed example of this evolution. In Figure 3 we show 
the evolution of the RD, starting from a more arbitrary string. Elementary RD patterns 
are fundamental and will be found in many structures at all levels. To see a cellular 
automaton example of this phenomenon of patterns crossing levels of structure, we 
later look at a replicator in “HighLife” a modification of John Horton Conway’s automaton 
“Life.” The HighLife replicator follows the same pattern as our RD replicator. However, 
the entity in HighLife that is self-replicating requires twelve steps to do the replication. 
The resultant patterns of replication can be seen in Figures 54 to 61. In the successive 
figures, twelve steps are hidden and we see the same basic pattern shown in Figure 1. 
We can understand directly how the RD replicator works. This gives a foundation for 
understanding how the more complex HighLife replicator behaves in its context. We 
take this phenomenon of the simple and the complex to be generic for many systems. 
By finding a point of simplicity, we make possible the evolution of understandings that 
are otherwise impossible to obtain. 
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Figure 1: RD replication 

 
Figure 2: Second picture of RD replication 
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Figure 3: A string evolution 

We can place the basic idea of RD with the context of cellular automata. RD is distinct 
from other types of cellular automaton in that its basic recursion is based on direct 
distinctions made (locally) in relation to distinctions present in the given state of the 
automaton. In a typical cellular automaton, the next state is obtained on the basis of 
simple distinctions about the previous state. These distinctions are not necessarily at 
the letter level. For example, in a Wolfram line automaton we have eight possible local 
neighborhoods consisting of triples of zeros and ones. 

Any distinction made among these eight, separating them into two classes, is 
acceptable as a rule for the Wolfram automaton. The operation of distinction is shifted to 
a higher level than the question of sameness or difference for nearby iconic elements of 
the state. This is the distinction between our “orthodox” RD models and other recursive 
models. We are interested in rules that involve direct matters of sameness or difference. 
Such RD rules are very primitive rules. Nevertheless, we regard the orthodox RD 
models as part of the larger class of recursive cellular automata. We wish to explore the 
relationships between our primordial structures and the closely related structures of all 
cellular automata as they are understood at this time. 
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Everyone who works in science, mathematics, or computer science is familiar with the 
fundamental role of the concept of distinction and the making of distinctions in both 
theory and practice. For example, Einstein’s relativity depends on a new distinction 
between space and time relative to an observer and a new unification of space and time 
that is part and parcel of this distinction. Every moment of using a digital computer 
depends upon the myriad of distinctions that the computer handles automatically, 
enabling the production and recording of these words and the computation and 
transmission of information. Distinctions act on other distinctions. Once a new 
distinction is born, it becomes the object of further action. Thus grows all the physics 
that comes from relativity and thus grows all the industry of computation that grows from 
the idea and implementation of the Turing machine, the programmed computer. 

And yet it is not usually recognized that it is through RD that all such progress is made. 
We discuss RD both in its human and its automatic aspects. In the automatic aspect, 
we give examples of automata that are based on making very simple distinctions of 
equality and right/left that then, upon allowing these distinctions to act on themselves, 
produce periodic and dialectical patterns that suggest what are usually regarded as 
higher level phenomena. In this way, and with these examples, we can illustrate and 
speculate on the nature of intelligence, evolution, and many themes of fundamental 
science. 

The remarkable feature of these examples of RD is their great simplicity coupled with 
the complexity of behaviors that can arise from them. Notice that each successive string 
in the recursion can be regarded as describing its predecessor. It is remarkable that 
there should be such intricate structure in the process of description. Description is 
another word for making a distinction. The description of a given string is a string of 
individual distinctions that have been made. Each individual distinction is one that 
recognizes whether a given character in a string is equal to a left neighbor, a right 
neighbor, both, or neither. This elementary distinction becomes instantiated as a 
character in the new description string. The description string can be subjected to the 
same scrutiny, and so the recursive process continues. 

Note that this recursive process depends, at its base, on the most elementary 
distinctions possible for character strings. No mathematical calculations are performed. 
We should mention that distinction-making without mathematical computation is 
ubiquitous in natural neuronal processing. Joel Isaacson’s collaboration with Eshel Ben-
Jacob has included attempts to demonstrate RD in live neuronal tissue.4 One can also 
point to the molecular interactions of DNA and RNA as natural RD automata. Finally, we 
can point to Buliga and Kauffman’s5 notion of chemlambda computation as abstract 
chemical combination computing that includes aspects of lambda calculus, but is based 
on direct and local action related to distinctions inherent in the system. 

The epistemology behind this automaton is based directly on distinctions that can be 
made automatic. Other cellular automata are also based on distinctions. For example, 

                                            
4 Private Communication with Eshel Ben-Jacob. 
5 Buliga and Kauffman, “Chemlambda.” 
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the well-known Wolfram line automata6 are based on character strings with only two 
characters and the recognition of the eight possible triples of characters, including 
characters to the left and to the right of a given character. The automaton rule then 
replaces the middle character according to the structure of this neighborhood. There is 
a crucial difference in epistemology between a Wolfram line automaton and our RD 
program. We do not replace according to an arbitrary rule. We place a character that 
describes the distinctive structure of the neighborhood of the predecessor character. 
Our automaton engages in a meta-dialogue about its own structure. This dialogue is 
then entered as a string for the automaton to examine and act upon once again. The 
patterns produced by this recursive distinction are part of a dialogue that the strings 
hold with themselves. One can ask many questions about RD as presented here. The 
automaton we have demonstrated illustrates a concept that can be instantiated in many 
ways. We hope, in a paper to come, to demonstrate Turing universality for automata of 
this type. But in fact we feel that the paradigm of RD goes beyond (or around) the 
paradigm of the Turing machine, and we will discuss that issue as well. 

There is another level to our automaton and that is the level of examining with human 
eyes and minds the output of the automaton, seeing patterns in the whole collection of 
strings and engaging in further design on this basis. This is where the recursive 
automatic distinctions meet the aware distinguishing of the observers of the system, 
connecting the automatic with the aware process and design level that goes on in the 
larger network of science. 

It is the case that in the design of computing machines human beings have for centuries 
confronted the issue of repeatability for the sake of computation or for the sake of the 
production of pattern (as in weaving) or the reliability of manufacture (as in 
timekeeping). This means that elementary distinctions must be reproducible and 
comparable as in mathematical notations, written language, and the mechanics of 
clocks and computing devices. Thus we shall refer to automatic distinctions when we 
speak of highly repeatable physical situations that can be regarded as reproductions of 
distinctions that are available to an observer. In some cases, such distinctions are 
designed by someone who engineers them into the device. In other cases, we 
recognize computational and reproducible patterns in natural situations. The earth goes 
around the sun periodically; the moon goes around the earth. Natural clocks arise from 
these periodicities and regularities observed in our world. Thus, in this essay, we do not 
restrict ourselves in the use of the word distinction to the meaning that a distinction is 
made by some human observer. We refer to distinctions that are ongoing in a device 
beyond our direct observation. Nevertheless, the buck stops at a human observer who 
recognizes the patterns of the device and who interprets the meaning of what has been 
produced. It is then possible to discuss the role of creativity in relation to deterministic 
and automatic actions.7 

                                            
6 Stephen Wolfram, A New Kind of Science (Champaign, IL: Wolfram Media, 2012). 
7 Acknowledgement. We thank Bernd Schmeikal for conversations and for sharing his own research in 
relation to our work. We thank Dan Sandin for a continuing collaboration with Lou Kauffman and 
particularly for sharing the computer program for 2D RD that has been evolved by the two of them. The 
graphical illustrations of 2D RD in this paper were all produced by that program. It also gives us great 
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2. The Logic of Distinction and the Distinction of Logic 
We have introduced the one-dimensional RD and its very simple alphabet based on the 
four iconic symbols shown in Figure 4. In this figure, we use a box rather than a circle 
for the icon that indicates difference to both the right and the left, and we use a box with 
a missing left vertical edge to denote sameness on the left and a box with a missing 
right vertical edge to denote sameness on the right. Sameness on both right and left is 
indicated by the two parallel lines that remain when the two vertical edges of the box are 
removed. In this figure, we give a logical justification for these icons in terms of the act 
of discrimination. That is, we give a logical construction for an icon that describes and 
embodies the discrimination itself. At a given point in the line of letters, there is a given 
letter. This letter is either distinct or different from its neighbor to the left and/or its 
neighbor to the right. We introduce a method to manufacture an icon that expresses 
these distinctions. In order to do this, we insert a line segment in between the space for 
the given letter and the space next to it if there is a difference between the given letter 
and its neighbor. We take as given a line segment at the top of the space and a line 
segment at the bottom of the space. (This actually indicates the condition of the one-
dimensional RD where it is distinct from its context above and below the one dimension 
of operations.) As a result, this process of discrimination constructs four possible icons 
that describe the condition of a given letter. The icons are illustrated (Figure 4), and the 
reader can see that they are an equals sign when there is no distinction to the left or to 
the right, left and right brackets when there is a distinction to the left or the right but not 
both, and a rectangular box when there is a distinction to both the right and the left. In 
the next few paragraphs, we describe this process further in terms of logical operations. 

                                                                                                                                             
pleasure to acknowledge Tom Mandel. Fifteen years ago, on his own initiative, he posted Joel Isaacson’s 
patent and his Stegano paper on the ISSS website, when he managed that site. Furthermore, we feel that 
the basic RD process is a clapping machine realizing part of Tom’s vision for the notion of depicting a 
relationship as a picture where when the This and the That are the two hands, then the Clapping of the 
hands connotes the relationship that is brought forth. In the RD, it is the distinctions and the spaces 
between them that clap in time and produce the “sounds” of further distinctions. Tom uses the notation 
shown below, 

 
or algebraically, (A,B)R = C, where C stands for the (whole) dividing/arising from A and B, and R the 
connection/relation of A and B; the This and the That. Such notation is simple, yet insistent, calling for the 
articulation of the unity C, the relation R and the “parts” A and B: Why is this important? The answer is: 
Because such notation and the attitude behind it continually call the question of relationship and the 
nature of relationship. All descriptions, all systems, are built this way. But we keep forgetting the glue and 
putting it into the background. Here, all three fundamentals in any distinction are brought into the 
foreground. 
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Figure 4: XOR of icons 

The fundamental underlying operation is exclusive or, often denoted by XOR. When we 
say “A XOR B” we mean the statement “A or B but not both A and B.” This special 
version of OR has the property that it is true only when A and B have different truth 
values. Logically, “A or B but not both A and B” is equivalent to “A and not B, or B and 
not A.” In this form we write the formula 

A * B = (A ∧ (∼ B)) ∨ ((∼ A) ∧ B). 

Here A * B denotes “A XOR B”, A ∨ B denotes “A or B,” and A ∧ B denotes “A and B.” 

When working with sets, we can interpret A * B as the intersection of A with the 
complement of B taken in union with the intersection of the complement of A with B. 
This is illustrated in Figure 5. In using the Venn diagrams, we have a very intuitive 
interpretation of XOR. A set is denoted by a shaded circle and when we XOR two sets, 
the part where they overlap vanishes. Thus two identical sets will yield an empty 
diagram under this operation. In this sense, a set is its own negation! We return to this 
point of view in Section 10 when we discuss the relationship of RD with Spencer-
Brown’s Laws of Form. In letting one shaded region operate upon another, the parts that 
remain black after the XOR operation indicate the differences between the two sets. In 
this way, XOR is a logical exemplar of the operation of discrimination and it can be 
understood to underlie all the RD operations we describe. One can imagine that 
discrimination (as practiced by thinking beings) is more complex than XOR, but XOR is 
a backbone or skeletal aspect of all instances of discrimination. 
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A or B but not both A and B. 

 
A XOR B = A*B = A^(~B) v (~A)^B 

Figure 5: XOR in Venn diagrams 

Now view Figure 4 once more. Here we show explicitly how the XOR operation acts on 
the icons for the 1D RD to produce the icons at the next iteration. We use a vertical 
slash | and an unmarked vertical slash for the two states of discrimination. We call these 
the marked and unmarked states, respectively. Given two such states, we define A * B 
as marked if one of A and B are different. If A equals B, then A * B is unmarked. This 
construction is then applied to the local interactions of the icons in the RD. If we have a 
row with ABC in that row, then for the new B, we form A * B and B * C. These vertical 
slashes or unmarked slashes become the left and right ends of the new icon that 
represents the new B in the next row of the RD, one full time-step later. Thus the new 
icon is formed by the discriminations to its left and to its right in regard to those neighbor 
icons. The figure shows explicitly how we leave the horizontal lines of the icon 
unchanged while we change the vertical slashes. As mentioned at the beginning of this 
section, this means that the logic of left and right naturally creates the four icons that are 
used in the 1D RD. The alphabet arises in the act of discrimination. The act of 
discrimination is quite general for the RD. Any letters or icons can be given to it at the 
start. The XOR applies to make the discrimination and to produce a standard icon that 
indicates the left-right discrimination that was made. 

Now view Figure 6, where we indicate how the XOR process can be accomplished by 
digital circuitry. The figure should be self-explanatory. There is a basic inverting element 
that will take states to their opposites and, with a multiplicity of inputs, this inversion is 
regarded as a NOR gate. That is, one starts with a collection of variables {a, b, c, d} and 
the NOR gate returns ∼ (a ∨ b ∨ c ∨ d). The circuit then implements the formula for the 
XOR operation that we have given above. This means that we could have an RD 
automaton that sampled signals inside a larger digital environment. It also means that 
we can look at the RD as connected inside an information-processing environment that 
uses logical operations in great generality. In particular, one could think of a sensing 
device that can detect differences in signals with which it otherwise has no direct 
access. Isaacson 8  has called such external but not directly detectable signals 
fantomarks. The information about their differences can become the initial data for an 
RD system that then amplifies and modifies these patterns, allowing the possibility for 
communication (by letting another system find differences in the signals generated by 

                                            
8 Isaacson, “Autonomic String-Manipulation System.” 

A^(~B) (~A)^B 



Journal of Space Philosophy 5, no. 1 (Spring 2016) 

18 
 

this RD) between systems that have internal states that are fantomarked for the other 
system. Isaacson has speculated that this could be the basis for communicating with 
extraterrestrials. Here we point out that it can be regarded as a partial description of the 
situation of human-to-human communication with its mix of local-to-global discrimination 
based on the detection and articulation of differences. 

 
Figure 6: XOR circuit 

We regard this description of the process of discrimination to be fundamental. A ground 
that is subject to discrimination is given at the beginning. The XOR operations probe 
this ground and write naturally via marked and unmarked states in the geometry and 
alphabet of special icons that can be further discriminated by the same process. The 
icons record a neighborhood of discriminations. In the case of 1D RD, this 
neighborhood is described in terms of left and right. The process of discrimination 
alternates between the local indications of marked and unmarked states (the vertical 
slash and its absence) and the global examination of icons for their identity or 
difference. It is this crossing of levels that makes the structure of the RD process 
repeatable and unique. 

In general, an RD structure has alphabetic elements at specific loci. A process of 
discrimination generates an icon for that location that describes the distinctions between 
that letter and its neighbors. These icons of distinction become the letters of a special 
alphabet that is coherent with the geometry of the RD structure. The recursion replacing 
present icons or alphabetic elements with these icons of distinction is the process of 
RD. The process arises directly from the idea of description and the fundamental 
distinction of the given geometry. In the next section, we show how this works for two-
dimensional RD. 

3. Two-Dimensional RD, a 16-Letter Alphabet, Quaternions and Spacetime 
We now consider a natural generalization of the one-dimensional RD to two 
dimensions. The geometry of the 2D RD is a rectangular lattice with square cells. Each 
cell is regarded as having four neighbors, one to the north, one to the south, one to the 
east, and one to the west, each sharing a one-dimensional interval of common 
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boundary. The simplest occupant of such a cell corresponds to openings or closings of 
the four parts of the boundary. Thus one can block all of the boundary, or all but one 
edge of the boundary, or all but two edges of the boundary and continue until one has 
the unique empty icon with no edges from the boundary. This makes a 16-letter 
alphabet, as illustrated in Figures 7 and 8. 

 
Figure 7: A snapshot of a 2D RD 

 
Figure 8: The 2D alphabet 1 

In Figures 9 and 10, we indicate how to code the letters as ordered sequences of four 
elements, each element a plus or a minus sign. In these figures, we also indicate how to 
make XOR combinations of these edges of the icons. The rule is simply that the 
superposition of two edges cancels them. With this, we can combine the letters to form 
other letters by superimposing them. When two letters are identical, then the 
superposition is the empty letter. Otherwise it is not empty, and it is a new resultant 
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letter. Thus, we see that this superposition of letters serves to distinguish one letter from 
another. Two letters are distinct if and only if their superposition is empty. 

 
Figure 9: The 2D alphabet 2 
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Figure 10: The 2D alphabet 3 

In the sequence from Figure 11 to Figure 19, we show eight steps from the first figure 
and returning to that figure. The first figure is an empty box with a fixed boundary 
condition that declares that its outer squares are different from the adjacent squares 
outside the box. Each successive figure is the result of one redescription by the RD 
process. In this case and with this initial condition, the process has period eight. 
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Figure 11: 2D RD box, no seed 

 
Figure 12: 2D RD box, no seed 
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Figure 13: 2D RD box, no seed 

 
Figure 14: 2D RD box, no seed 
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Figure 15: 2D RD box, no seed 

 
Figure 16: 2D RD box, no seed 
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Figure 17: 2D RD box, no seed 

 
Figure 18: 2D RD box, no seed 
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Figure 19: 2D RD box, no seed 

In the sequence from Figure 20 to Figure 32, we show the same box with a different 
initial condition (some marked spaces inside). Now the evolution is more complex, as is 
illustrated in the figures. Remarkably, in this case the result is eventually periodic of 
period two. 

 
Figure 20: 2D RD box with seed 
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Figure 21: 2D RD box with seed 

 
Figure 22: 2D RD box with seed 
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Figure 23: 2D RD box with seed 

 
Figure 24: 2D RD box with seed 
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Figure 25: 2D RD box with seed 

 
Figure 26: 2D RD box with seed 
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Figure 27: 2D RD box with seed 

 
Figure 28: 2D RD box with seed 
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Figure 29: 2D RD box with seed 

 
Figure 30: 2D RD box with seed 
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Figure 31: 2D RD box with seed 

 
Figure 32: 2D RD box with seed 

Figure 33 and Figure 34 illustrate two consecutive frames from this automaton after it 
has entered period two. The reader can compare these two frames and see that each 
describes the other. Focus on the pair of 2D patterns, Tweedledum and Tweedledee, in 
these two figures. What is remarkable about these two patterns is that they mutually 
describe each other in such a way that they complement each other, just like a positive 
and a negative in photography. If separated, each would construct its complement, and 
the patterns would replicate indefinitely. So these are antithetical and their superposition 
yields a synthesis. (A synthesis here would be the big square filled completely with only 
little squares.) Note that they are typical in many 2D RD runs and are not exceptions. 
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Figure 33: Tweedledum 

 
Figure 34: Tweedledee 

The two strands of DNA are also complementary, which allows their replication. The 
reader will recognize how much more complex this 2D complementarity is than the 1D 
complementarity of DNA. Obviously, no one can dream of or design such intricate 
mutual descriptions of patterns, and yet they are by-products of an automatic RD 
automaton. One might speculate that the DNA molecule with its complementary Watson 
and Crick strands evolved through recursive chemical interactions. 

3.1 Quaternions and Iterants 
In this subsection, we show how the 16-letter alphabet is related to the algebra of the 
quaternions and concomitantly to the algebra of spacetime. Before we do this, however, 
it will be helpful to explain a way to think about such matters that is developed in the 
paper by Kauffman (and the references therein).9 In that paper, one finds a temporal 
interpretation of the square root of minus one. The idea is that one starts with a simple 
oscillation such as 

 +−+−+−+−+− . 

                                            
9 Kauffman, “Iterants, Fermions, and Majorana Operators.” 
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Starting in this way, we can connect with RD simply by observing that some of the 
simplest 1D RD with tight boundary conditions will oscillate with period two. Once 
recursion is on the scene, the simplest oscillations are inevitably present. That said, let 
us make two abbreviations that correspond to two ways to distinguish a period two 
oscillation: 

[+, −] = [+1, −1] 

and 

[−, +] = [−1, +1]. 

These two ordered pairs correspond to distinguishing the oscillation as proceeding from 
plus to minus or as proceeding from minus to plus. 

Call an ordered pair such as [a, b] an iterant. We can combine iterants by adding their 
coordinates or by multiplying their coordinates. 

[a, b] + [c, d] = [a + c, b + d] 

[a, b][c, d] = [ac, bd]. 

We add to this structure an operator η that participates in the time shift that relates one 
iterant to the other. 

η2 = 1 

[a, b]η = η[b, a]. 

Formally, η acts as a permutation of order two, exchanging [a, b] for [b, a] when it is 
commuted with an iterant. We regard an element of the form [a, b]η as a temporally 
sensitive iterant. Note what happens when we multiply 

i = [+1, −1]η 

by itself. 

i2 = ii = [+1, −1]η[+1, −1]η = [+1, −1][−1, +1]ηη = [(+1)(−1), (−1)(+1)]1 = [−1, −1] = −1. 

Thus 

i2 = −1. 

We have produced a square root of minus one as a temporally sensitive iterant 
associated with an elementary oscillation. 

In fact, we have produced an algebra containing 

{η,1 = [1, 1],−1 = [−1, −1],α = [1, −1],−α = [−1, 1]}.  
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Note that 

η2 = α2 = 1 

and that 

αη + ηα = 0. 

This is a first example of a Clifford algebra, an algebra generated by elements of square 
one that anti-commute with one another. We have i = αη and 

i2 = αηαη = α(−α)η2 = −α2 = −1. 

Thus, we can also see our temporal interpretation of the square root of minus one as a 
Clifford algebra phenomenon. 

Clifford algebras are deeply connected with physics. To see a hint of this we consider a 
fundamental formula from special relativity theory (we use the convention that the speed 
of light is c = 1.). Let E denote energy, p momentum, and m the mass of a particle. Now 
let 

E = αp + ηm. 

Assume that p and m commute with α and β. You can easily prove by multiplying it out 
that 

E2 = (αp + ηm)(αp + ηm) = α2p2 + η2m2 + (αη + ηα)pm = p2 + m2 + 0pm = p2 + m2. 

This formula E2 = p2 + m2 is fundamental to special relativity, and we have shown that it 
follows from a Clifford algebra representation of the energy. This way of writing the 
energy is due to the great physicist Dirac, and is the beginning of the deep relationship 
between Clifford algebra and physics. Our point is that by looking at this through the 
lens of iterants, we can draw a connection between fundamental recursion and quantum 
and relativistic physics.10 

Now we turn to the quaternions. Sir William Rowan Hamilton discovered quaternion 
algebra in 1843, after 15 years of trying to find a three-dimensional analog for complex 
numbers. When he realized the key was a four-dimensional space, the pattern fell into 
place. Recall that the quaternions are generated by {1, −1, I, J, K} so that I2 = J2 = K2 = 
IJK = −1 from which it follows that IJ = K, JK = I, and KI = J, and that IJ = −JI, JK = −KJ, 
and KI = −IK. 

There is a natural iterant structure for the quaternions (see Figure 35). In this figure we 
show the order four iterant sequences that correspond to each of I, J, and K and the 
analogy of the simple time shifter η that is associated with each one. These analogs are 

                                            
10 For further details, see Bernd Schmeikal, “Basic Intelligence Processing Space,” Journal of Space 
Philosophy 5, no. 1 (Spring 2016): 65-89; Kauffman, “Iterants, Fermions, and Majorana Operators.” 
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diagrammed as permutations, and they act when one composes the iterants by 
attaching their braided forms together. The new temporal shift operators generate the 
so-called Klein Four Group, the symmetries of a square.11 We now show how this 
iterant version of the quaternions is related to our 16-letter alphabet and how the 
symmetries of the square come into play directly. 

 
Figure 35: Iterant representation of the quaternions 

Now we turn to Figure 36, where we show how there is a natural quaternion structure 
associated with the 16-letter alphabet. What you see is a subset of the 16-letter 
alphabet and the operations A, B, C (and 1) of the Klein Four Group. We define I, J, K 
each of the form I = aA, J = bB, and K = cC where a, b, and c are certain elements of 
the 16-letter alphabet. We then define, e.g., xA = AxA, where xA is the operation of the 
symmetry element A on the letter x. We define xy (on letters) via XOR of the 
corresponding letters in the alphabet. We find that I, J, and K give the quaternions. Thus 
the quaternions are a combination of XOR operations and symmetry operations in the 
alphabet. Note that xy = XOR(x,y) = the result of superimposing x and y as letters and 
canceling common occurrences. Once we have the quaternions, we have an entry into 
spacetime algebra as follows. We have II = JJ = KK = IJK = −1. Let E = (x,y,z,t) = xI + yJ 
+ zK + t1 where x, y, z, and t are real numbers. Then think of E as a point in spacetime. 
We have 

E2 == (xI + yJ + zK + t1)(xI + yJ + zK + t1) = −x2 −y2 −z2 +t2 

                                            
11 See Kauffman, “Iterants, Fermions, and Majorana Operators” for more details. 
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Which is the Minkowski metric (it is often written as the negative of this expression) for 
spacetime. 

 
Figure 36: The 2D alphabet 4 

Electromagnetism and much other physics can be written in quaternionic language. One 
can start with a Clifford algebra with generators e1, e2, e3, e4 with (ei)2 = 1 and distinct 
elements anti-commuting and construct spacetime algebra, the quaternions, and more. 
The iterant structure that we have hinted at here is part of a reformulation of the 
mathematics of matrix algebra that puts it into a temporal framework and a framework 
that respects the ubiquitous appearance of the symmetries of permutation groups. It is 
likely that in another generation of the RD concept, we shall include more about the role 
of symmetry. In this way, we have the beginnings of a relationship of RD structure and 
fundamental frameworks for physical theory. 12 All this said, we have made only a 
superficial connection between the spacetime algebra of the quaternions and the 
actions or operations of the 2D RD. 

The iterant process is in back of the quaternion multiplication, where the symmetry 
group acts on the alphabetical letters. This could become part of an extension of RD 
operations. Then the RD would not just compare and describe. It would also interact 
with its own descriptions and change them by certain symmetry operations. This is one 
possibility for adding rules, but we do not yet have a clear picture of what extra structure 
can be added naturally to the very simple base with which we have started. 

                                            
12  For further details, see Schmeikal, “Basic Intelligence Processing Space”; Kauffman, “Iterants, 
Fermions, and Majorana Operators.” 
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4. Distinctions, Distinctioning and Wolfram Automata 
In this section, we make a comparison with the general structure of Wolfram line 
automata.13 The Wolfram automata use a very simple alphabet consisting of two letters 
(black and white, or 0 and 1). At every stage in the process, a distinction is applied to 
the eight possible states consisting of a square and its neighbors to the left and to the 
right. The distinction assigns 0 or 1 to each of these states, and the fate of the middle 
square in the next row is decided by that distinction. We see that these line automata 
are certainly RD automata, but that they are not strictly orthodox in our sense, in that 
the alphabet is not descriptive of all the local distinctions under consideration. The 
alphabet is simple, but the distinctions that can be made are complex. The result of this 
choice leads to a large and interesting body of phenomena. 

In Figure 37, we see a depiction of the results of applying Wolfram Rule 126. As the 
reader can see, by comparison with Figure 1 and Figure 2, the overall pattern resulting 
from Rule 126 is essentially the same as that obtained from our 1D RD. The underlying 
structure of alphabet and distinction is different. This is a first example indicating the 
need for more detailed comparison between orthodox RD rules and cellular automata. 
We will leave such analysis for further work. In Figures 38 and 39 we illustrate Rule 110 
and show how its iteration looks. It differs from Rule 126 in only one place. This de-
symmetrization of Rule 126 results in very complex behavior. Here we are farther from 
the simple 1D RD. Rule 110 takes full advantage of the very simple alphabet of zero 
and one, and it uses an asymmetrical distinction on the set of eight triples of zeros and 
ones. The result is a very complex pattern of evolution and an automaton that has been 
proved to be Turing universal. One can certainly regard Rule 110 as a highly successful 
application of non-orthodox RD. We will return to this rule in a subsequent paper and 
examine it further in the light of RD structure. 

 
Figure 37: Wolfram Rule 126 

                                            
13 Wolfram, New Kind of Science. 
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Figure 38: Wolfram Rule 110 

 
Figure 39: Wolfram Rule 110 

5. The HighLife Replicator 
This section is a comparison of patterns of the self-replicating element in the 1D RD and 
a very similar pattern in the much more complicated environment of the two-dimensional 
cellular automaton called HighLife, a variant of John Horton Conway’s Game of Life. In 
HighLife, the environment is a rectangular lattice and each square is regarded as having 
eight neighbors. We could analyze an orthodox RD with an alphabet that generalizes 
the 16-letter alphabet to a 256 = 28 letter alphabet for this geometry. This analysis is a 
future project for us. HighLife uses a simple binary rule. Each square in the lattice is 
either occupied (by a marker) or it is unoccupied (unmarked). We say that a square has 
n neighbors (where n is between 0 and 8) if n of its neighboring squares are occupied. 
The rule for HighLife is that an occupied square will survive (remain occupied) only if it 
has two or three neighbors. Otherwise it will become unmarked (“die”). An unoccupied 
square will become occupied (be “born”) if it has three or six neighbors. In HighLife, 
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there is a remarkable, small configuration that can reproduce itself. It takes 12 steps for 
this replication process to take place. See Figures 40-52. 

 
Figure 40: The HighLife Replicator 

 
Figure 41: The HighLife Replicator 

 
Figure 42: The HighLife Replicator 

 
Figure 43: The HighLife Replicator 

 
Figure 44: The HighLife Replicator 

 
Figure 45: The HighLife Replicator 

 
Figure 46: The HighLife Replicator 
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Figure 47: The HighLife Replicator 

 
Figure 48: The HighLife Replicator 

 
Figure 49: The HighLife Replicator 

 
Figure 50: The HighLife Replicator 

 
Figure 51: The HighLife Replicator 

 
Figure 52: The HighLife Replicator 

Quite remarkably, the pattern that these replicators follow is essentially the same as the 
pattern that is followed by the self-replicating element in the 1D RD. See Figures 53 to 
60. 
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Figure 53: The 12-step HighLife replicator  

 
Figure 54: The 12-step HighLife replicator 

 

Figure 55: The 12-step HighLife replicator 

 
Figure 56: The 12-step HighLife replicator 

 
Figure 57: The 12-step HighLife replicator 

 
Figure 58: The 12-step HighLife replicator 

 
Figure 59: The 12-step HighLife replicator 
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Figure 60: The 12-step HighLife replicator 

6. RD and DNA 
We begin this section with a review of material from the introduction to the paper. In this 
section, we describe one version RD process, and we show how it gives rise to a 
pattern of self-replication that is recognizable as a case of replication that we have 
called DNA replication.14 

The rules for the RD process are very simple. We begin with an arbitrary, finite text 
string delimited by the character * at both ends. The RD process creates a new string 
from the given string by describing the distinctions in the initial string. Each character in 
the initial string is examined together with its left and right neighbors. Let LCR denote a 
character C with neighbors L and R. Then we replace C by a new character according 
to the following rules: 

1. C → = if L = C and C = R (no distinction). 
2. C → [ if L ≠ C but C = R (distinction on the left). 
3. C → ] if L = C but C ≠ R (distinction on the right). 
4. C → O if L ≠ C and C ≠ R (distinction on both the left and the right). 
5. If C is adjacent to * change C to = (This is just a choice of boundary behavior). 

See Figure 3 for the result of applying the RD process to a chosen text string. 

In Figure 1, we showed the result of starting with a very simple text string. In this figure 
we do not print the character =, so that the resulting strings have empty space where 
this character would appear. As the reader can see, the string * ======]O[====== * 
has a long sequence of transformations under the RD process. The pattern ]O[ is 
replicated by the sequence below. 

1  =======]O[=======  

2  ======]OOO[=======  

3  =====]O[=]O[======  

Remarkably, this self-replication has the same pattern as an abstract description of DNA 
replication. We explain this below in a separate section. 

                                            
14 Kauffman, “Biologic”; Kauffman, “Self-Reference.” 

 



Journal of Space Philosophy 5, no. 1 (Spring 2016) 

44 
 

6.1 A Quick Review of the Pattern of DNA Replication 
DNA consists of two strands of base-pairs wound helically around a phosphate 
backbone. It is customary to call one of these strands the Watson strand and the other 
the Crick strand. Abstractly, we can write 

DNA = < W | C > 

to symbolize the binding of the two strands into the single DNA duplex. Replication 
occurs via the separation of the two strands via polymerase enzyme. This separation 
occurs locally and propagates. Local sectors of separation can amalgamate into larger 
pieces of separation as well. Once the strands are separated, the environment of the 
cell can provide each with complementary bases to form the base pairs of new duplex 
DNAs. Each strand, separated in vivo, finds its complement being built naturally in the 
environment. This picture ignores the well-known topological difficulties present to the 
actual separation of the daughter strands (see Figure 61). In this figure, we give some 
hints about the topological complexities that are not discussed here. Biologists 
discovered enzymes that cut and reconnect strands of DNA, resulting in the release of 
topological linking that would otherwise obstruct the separation of the newly produced 
strands of DNA. All this is subject to another discussion of its relationship with RD 
concepts. 

 
Figure 61: DNA Replication 

The base pairs in the DNA sequence are AT (Adenine and Thymine) and GC (Guanine 
and Cytosine). Thus if 

< W | = <   TTAGAATAGGTACGCG   | 

then 

| C > = |   AATCTTATCCATGCGC   >. 

Symbolically we can oversimplify the whole process as 
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< W | + E → < W | C > = DNA 

E + | C > → < W | C > = DNA 

< W | C > → < W | + E + | C > = < W | C >< W | C > 

Either half of the DNA can, with the help of the environment, become a full DNA. We 
can let E → | C > < W | be a symbol for the process by which the environment supplies 
the complementary base pairs AG, TC to the Watson and Crick strands. In this 
oversimplification, we have cartooned the environment as though it contained an 
already-waiting strand | C > to pair with < W | and an already-waiting strand < W | to pair 
with | C >. 

In fact, it is the opened strands themselves that command the appearance of their 
mates. They conjure up their mates from the chemical soup of the environment. 

The environment E is an identity element in this algebra of cellular interaction. That is, E 
is always in the background and can be allowed to appear spontaneously in the cleft 
between Watson and Crick: 

< W | C > → < W | | C > → < W | E | C > 

→ < W | | C >< W | | C > → < W | C >< W | C >. 

This is the formalism of DNA replication. 

We are now in a position to compare the formalism of the DNA replication with the RD 
replication. 

1  =======]O[=======  

2  ======]OOO[=======  

3  =====]O[=]O[======  

In the RD replication, we start with ]O[ in its RD environment. Matters of distinction of 
this entity from its surroundings lead to the production of ]OOO[, and then we see that 
the identity of the internal O with its neighbors leads to the splitting ]O[=]O[. There is no 
question that the basis of this replication is not the same as the DNA replication, but 
thematically, the two patterns are certainly related. The RD pattern is at a different level 
than the DNA pattern. In the RD replication, that environment for the symbol string is the 
larger symbol string. Thus it is only in the eyes of the observer of the RD that the entity 
]O[ is distinguished and is seen as an actor against the background of declarations of 
identity  ======== . These declarations of identity are indeed equal to one another 
and so form an invariant background or void from which patterns arise in the presence 
of any difference. This is, in fact how our entity came into being. 

 AAAAAAAAAAAAABAAAAAAAAAAAAA  
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 ==============]O[===============  

Our entity ]O[ is the first description of sameness on left, difference in middle, sameness 
on the right. The left and right icons ] and [ form a carapace for the indicator of 
difference O. Thus a bare difference of B from its equal neighbors A evolves by 
description, at once into a proto-cell with a carapace. It is this protocell that then 
undergoes mitosis in the next two rounds of description. The cell-division or mitosis is 
enabled by the production of new carapace (]OOO[ → ]O[=]O[) from within the cell. It is 
important to note that this production does not come from an inner mechanism of the 
cell, but rather from the global recursive/descriptive situation of these entities in the 
entire line of the RD structure. It is the influence of the surrounding void that makes all 
this happen in the course of recursive description and distinction. It is a fortuitous 
accident of working in one dimension that the carapace is seen in a left portion paired 
with a right portion, analogous to the two strands of the DNA. At this condensed 
creation scenario, we find that the patterns of DNA replication, cell formation, and 
mitosis all appear at once in the first few steps away from a marking (B) in the void (of 
repeated As). 

For DNA replication, we can interpret the correspondence as: 

1. ] = Watson, [ = Crick, O = backbone or binding. 
2. RD action results in the opening of the backbone so that binding O is replaced by 

environment OOO. 
3. RD action relative to the environment results in the placement of a new Watson 

and a new Crick. So we have the self-replication of ]O[. 

Note that there is another level at which we can think about this! Regard ] and [ as cell 
walls. Then we are witnessing not DNA reproduction, but mitosis itself! The little fellow 
]O[ is a cell and we are watching how it reproduces in the line environment 
============= of the void where there are no distinctions. The reader should now 
look again at Figure 3 and note the many appearances and interactions related to this 
elementary cell. 

Of course the interpretations of backbone, strand, environment, and cell are different 
from what happens in the biology, but it is very interesting that the basic principles are 
similar. 

Note how we get  ===]OOOOO  goes to  ==]O[===  So actually the whole 
environment flips here. But it is contained in the above scenario. Everything that 
happens in RD is non-local, since a single event affects the whole string. 

Perhaps it is clear to the reader that RD in the sense of this section is a potentially 
explosive topic that will grow to influence all the aspects of biology and computing. We 
believe that this is the case. The principle of [distinction/description in recursive process] 
applies at all levels of biology, cognition, information science, and computing. 
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7. Maturana, Uribe, and Varela and the Game of Life 
Some examples from cellular automata clarify many of the issues about replication and 
the relationship of logic and biology. Here is an example due to Maturana, Uribe, and 
Varela. 15  The ambient space is two dimensional and in it there are “molecules” 
consisting of “segments” and “disks” (the catalysts; see Figure 62). There is a minimum 
distance between the segments and the disks (one can place them on a discrete lattice 
in the plane). And “bonds” can form with a probability of creation and a probability of 
decay between segment molecules with minimal spacing. There are two types of 
molecules: “substrate” (the segments) and “catalysts” (the disks). The catalysts are not 
susceptible to bonding, but their presence (within say three minimal step lengths) 
enhances the probability of bonding and decreases the probability of decay. Molecules 
that are not bonded move about the lattice (one lattice link at a time) with a probability of 
motion. In the beginning, there is a randomly placed soup of molecules with a high 
percentage of substrate and a smaller percentage of catalysts. What will happen over 
the course of time? 

 
Figure 62: Proto-Cells of Maturana, Uribe, and Varela 

In the course of time, the catalysts (which are basically separate from one another due 
to lack of bonding) become surrounded by circular forms of bonded or partially bonded 
substrate. A distinction (in the eyes of the observer) between inside (near the catalyst) 
and outside (far from a given catalyst) has spontaneously arisen through the “chemical 
rules.” Each catalyst has become surrounded by a proto-cell. No higher organism has 
formed here, but there is a hint of the possibility of higher levels of organization arising 
from a simple set of rules of interaction. The system is not programmed to make the 
proto-cells. They arise spontaneously in the evolution of the structure over time. 

8. Conway Life 
One might imagine that organisms could be induced to arise as the evolutionary 
behavior of formal systems. There are difficulties, not the least of which is that there are 

                                            
15 H. R. Maturana, R. Uribe, and F. G. Varela, “Autopoesis: The Organization of Living Systems, Its 
Characterization and a Model,” Biosystems 5 (1974): 7-13. See also F. J. Varela, Principles of Biological 
Autonomy (New York: North Holland Press, 1979) for a global treatment of related issues.  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nearly always structures in such systems whose probability of spontaneous emergence 
is vanishingly small. A good example is given by another automaton – John H. 
Conway’s Game of Life. In Life, the cells appear and disappear as marked squares in a 
rectangular planar grid. A newly marked cell is said to be born. An unmarked cell is 
dead. A cell dies when it goes from the marked to the unmarked state. A marked cell 
survives if it does not become unmarked in a given time step. According to the rules of 
Life, an unmarked cell is born if and only if it has three neighbors. A marked cell 
survives if it has either two or three neighbors. All cells in the lattice are updated in a 
single time step. The Life automaton is one of many automata of this type and indeed it 
is a fascinating exercise to vary the rules and watch a panoply of different behaviors. 

For this discussion, we concentrate on some particular features. There is a 
configuration in Life called a glider (see Figure 63), which illustrates a series of gliders 
going diagonally from left to right down the Life lattice, as well as a glider gun 
(discussed below) that has produced them. The glider consists of five cells in one of two 
basic configurations. Each of these configurations produces the other (with a change in 
orientation). After four steps, the glider reproduces itself in form, but shifted in space. 
Gliders appear as moving entities in the temporality of the Life board. The glider is a 
complex entity that arises naturally from a small random selection of marked cells on 
the Life board. Thus the glider is a naturally occurring entity, just like the proto-cell in the 
Maturana-Uribe-Varela automaton. 

 
Figure 63: Glider gun and gliders 

But Life contains potentially much more complex phenomena. For example, there is the 
glider gun (see Figure 63), which perpetually creates new gliders. The gun was invented 
by the Gosper Group, a group of researchers at MIT in the 1970s. It is highly unlikely 
that a gun would appear spontaneously in the Life board. Of course, there is a tiny 
probability of this, but we would guess that the chances of the appearance of the glider 
gun by random selection or evolution from a random state is similar to the probability of 
all the air in the room collecting in one corner. Nevertheless, the gun is a natural design 
based on forms and patterns that do appear spontaneously on small Life boards. The 
glider gun emerged through the coupling of the power of human cognition and the 
automatic behavior of a mechanized formal system. 

Cognition is, in fact, an attribute of our biological system at an appropriately high level of 
organization. Cognition itself looks as improbable as the glider gun! Do patterns as 
complex as cognition or the glider gun arise spontaneously in an appropriate biological 
context? 
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There is a middle ground. If one examines cellular automata of a given type and varies 
the rule set randomly rather than varying the initial conditions for a given automaton, 
then a very wide variety of phenomena will present themselves. In the case of molecular 
biology at the level of the DNA there is exactly this possibility of varying the rules, in the 
sense of varying the sequences in the genetic code. So it is possible at this level to 
produce a wide range of remarkable complex systems. 

9. Other Forms of Replication 
Other forms of self-replication are quite revealing. For example, one might point out that 
a stick can be made to reproduce by breaking it into two pieces. This may seem 
satisfactory on the first break, but the breaking cannot be continued indefinitely. In 
mathematics, on the other hand, we can divide an interval into two intervals and 
continue this process ad infinitum. For a self-replication to have meaning in the physical 
or biological realm, there must be a genuine repetition of structure from original to copy. 
At the very least, the interval should grow to twice its size before it divides (or the parts 
should have the capacity to grow independently). 

A clever automaton, due to Chris Langton, takes the initial form of a square in the plane. 
The square extrudes an edge that grows to one edge length and a little more, turns by 
ninety degrees, grows one edge length, turns by ninety degrees grows one edge length, 
turns by ninety degrees and when it grows enough to collide with the original extruded 
edge, cuts itself off to form a new adjacent square, thereby reproducing itself. This 
scenario is repeated as often as possible, producing a growing cellular lattice (see 
Figure 64). 

 
Figure 64: Langton’s automaton 

The replications that happen in automata such as Conway’s Life are all really instances 
of periodicity of a function under iteration. The glider is an example where the Life game 
function L applied to an initial condition G yields L5(G) = t(G) where t is a rigid motion of 
the plane. Other intriguing examples of this phenomenon occur. For example, the initial 
condition D for Life shown in Figure 65 has the property that L48(D) = s(D) + B where s 
is a rigid motion of the plane and s(D) and the residue B are disjoint sets of marked 
squares in the lattice of the game. D itself is a small configuration of eight marked 
squares fitting into a rectangle of size 4 by 6. Thus D has a probability of 1/735471 of 
being chosen at random as eight points from 24 points. 
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Figure 65: Condition D with geometric period 48 

Should we regard self-replication as simply an instance of periodicity under iteration? 
Perhaps, but the details are more interesting in a direct view. The glider gun in Life is a 
structure GUN such that L30(GUN) = GUN + GLIDER. Further iterations move the 
disjoint glider away from the gun so that it can continue to operate as an initial condition 
for L in the same way. A closer look shows that the glider gun is fundamentally 
composed of two parts P and Q such that L10(Q) is a version of P and some residue, 
and such that L15(P) = P* + B, where B is a rectangular block, and P* is a mirror image 
of P, while L15(Q) = Q* + B’ where B’ is a small non-rectangular residue. See Figure 66 
for an illustration showing the parts P and Q (left and right) flanked by small blocks that 
form the ends of the gun. One also finds that L15(B + Q*) = GLIDER + Q + Residue. This 
is the internal mechanism by which the glider gun produces the glider. 

 
Figure 66: P (left) and Q (right) compose the glider gun 

The extra blocks at either end of the glider gun act to absorb the residues that are 
produced by the iterations. Thus the end blocks are catalysts that promote the action of 
the gun. Schematically the glider production goes as follows: 

P + Q → P* + B + Q* 

B + Q* → GLIDER + Q 
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whence 

P + Q → P* + B + Q* → P + GLIDER + Q = P + Q + GLIDER. 

The last equality symbolizes the fact that the glider is an autonomous entity no longer 
involved in the structure of P and Q. It is interesting that Q is a spatially and time shifted 
version of P. Thus P and Q are really copies of each other in an analogy to the structural 
relationship of the Watson and Crick strands of the DNA. The remaining part of the 
analogy is the way the catalytic rectangles at the ends of the glider gun act to keep the 
residue productions from interfering with the production process. This is analogous to 
the enzyme action of the topoisomerase in the DNA. 

The point about this symbolic or symbiological analysis is that it enables us to take an 
analytical look at the structure of different replication scenarios for comparison and for 
insight. 

There are a number of variants of Conway Life. We have earlier in this paper discussed 
HighLife and its self-replicator, whose pattern is a direct relative to the self-replicator in 
the 1D RD. Kauffman discussed another variant of Conway Life16 and denoted it by the 
name 7-Life in that paper. The generative rule for 7-Life is B37/S23, meaning that an 
empty square gives birth to a marked square if it has either three neighbors or seven 
neighbors, and a marked square survives to the next generation if it has either two or 
three neighbors. Conway Life is defined by the distinction B3/S23. In Conway Life, one 
has gliders that occur naturally and we have discussed the glider gun that emerged 
from a design interaction with computer experiments using Conway Life. However, 7-
Life behaves differently from Conway Life. There are still naturally occurring gliders, but 
relatively small initial configurations tend to behave dynamically, interacting via the 
gliders to produce self-sustaining, slowly growing configurations. These configurations 
can eventually give birth to more complex self-reproducing entities.17 The entity that 
emerges, usually after thousands of iterations, is more complex (a pair of mirror-imaged 
configurations) than the glider, but by our experience, not so improbable as never to 
emerge! This leads to the question of the possibility and probability of the emergence of 
complex structures, analogous to biological structures, in the forward history of an RD 
automaton. We mention the cases of non-orthodox RD and experiments of this kind 
since structurally, all these automata do operate recursively on the basis of distinctions 
made at each step. The variants of Conway Life and the Wolfram automata are all very 
simple instances of RD where the basic language is binary and there is only one 
distinction made at each step. 

10. Laws of Form 
In this section, we discuss a formalism of G. Spencer-Brown in his book Laws of 
Form, 18 which is often called the calculus of indications. This calculus is a study of 
mathematical foundations with a topological notation based on one symbol, the mark 

                                            
16 Kauffman, “Reflexivity and Eigenform.” 
17 Ibid. 
18 G. Spencer-Brown, Laws of Form (New York: Julian Press, 1969). 
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. 

This single symbol represents a distinction between its own inside and outside. The 
mark is seen as making a distinction, and the calculus of indications is a calculus of 
distinctions, where the mark refers to the act of distinction. The mark is self-referential 
and refers to its own action and to the distinction that is made by the mark itself. 
Spencer-Brown is quite explicit about this identification of action and naming in the 
conception of the mark, and by the end of the book he reminds the reader that “the 
mark and the observer are, in the form, identical.” We make this discussion here 
because it is important to trace the origins of the idea of distinction that is so central to 
the present paper. 

The concept of distinction as used in Laws of Form is very close to that used implicitly in 
set theoretic mathematics. There the fundamental distinction is represented by set 
brackets (the act of collecting into a set) and the empty set { } is the first distinction. 

In the calculus of indications, the mark can interact with itself in two possible ways. The 
resulting formalism becomes a version of Boolean arithmetic, but fundamentally simpler 
than the usual Boolean arithmetic of 0 and 1 with its two binary operations and one 
unary operation (negation). 

Remarkably, the calculus of indications provides a context in which we can say exactly 
that a certain logical particle, the mark, can act as negation and can interact with itself to 
produce itself. 

The mathematics in Laws of Form begins with two laws of transformation about these 
two basic expressions. Symbolically, these laws are: 

1.  Calling  

2.  Crossing  

The equals sign denotes a replacement step that can be performed on instances of 
these patterns (two empty marks that are adjacent or one mark surrounding an empty 
mark). In the first of these equations, two adjacent marks condense to a single mark, or 
a single mark expands to form two adjacent marks. In the second equation, two marks, 
one inside the other, disappear to form the unmarked state indicated by nothing at all. 
That is, two nested marks can be replaced by an empty word in this formal system. 
Alternatively, the unmarked state can be replaced by two nested marks. These 
equations give rise to a natural calculus, and the mathematics can begin. For example, 
any expression can be reduced uniquely to either the marked or the unmarked state. 
The following example illustrates the method: 
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The general method for reduction is to locate marks that are at the deepest places in 
the expression (depth is defined by counting the number of inward crossings of 
boundaries needed to reach the given mark). Such a deepest mark must be empty and 
it is either surrounded by another mark, or it is adjacent to an empty mark. In either 
case, a reduction can be performed by either calling or crossing. 

Laws of Form begins with the following statement. “We take as given the idea of a 
distinction and the idea of an indication, and that it is not possible to make an indication 
without drawing a distinction. We take therefore the form of distinction for the form.” 
Then the author makes the following two statements (laws): 

1. The value of a call made again is the value of the call. 
2. The value of a crossing made again is not the value of the crossing. 

The two symbolic equations above correspond to these statements. First, examine the 
law of calling. It says that the value of a repeated name is the value of the name. In the 
equation 

 
one can view either mark as the name of the state indicated by the outside of the other 
mark. In the other equation 

 
the state indicated by the outside of a mark is the state obtained by crossing from the 
state indicated on the inside of the mark. Since the marked state is indicated on the 
inside, the outside must indicate the unmarked state. The Law of Crossing indicates 
how opposite forms can fit into one another and vanish into nothing, or how nothing can 
produce opposite and distinct forms that fit one another, hand in glove. The same 
interpretation yields the equation 

 
where the left-hand side is seen as an instruction to cross from the unmarked state, and 
the right hand side is seen as an indicator of the marked state. The mark carries a 
double meaning. It can be seen as an operator, transforming the state on its inside to a 
different state on its outside, and it can be seen as the name of the marked state. That 
combination of meanings is compatible in this interpretation. 

From the calculus of indications, one moves to algebra. Thus 

 
stands for the two possibilities 



Journal of Space Philosophy 5, no. 1 (Spring 2016) 

54 
 

 
In all cases we have 

 
By the time we articulate the algebra, the mark can take the role of a unary operator 

 
But it retains its role as an element in the algebra. Thus begins algebra with respect to 
this non-numerical arithmetic of forms. The primary algebra that emerges is a subtle 
precursor to Boolean algebra. One can translate back and forth between elementary 
logic and primary algebra: 

1.  

2.  

3.  

4.  

5.  
6.  

The calculus of indications and the primary algebra form an efficient system for working 
with basic symbolic logic. 

By reformulating basic symbolic logic in terms of the calculus of indications, we have a 
ground in which negation is represented by the mark and the mark is also interpreted as 
a value (a truth value for logic) and these two interpretations are compatible with one 
another in the formalism. At this point the reader can appreciate what has been done if 
he or she returns to the usual form of symbolic logic. In that form we see that 

∼∼ X = X 

for all logical objects (propositions or elements of the logical algebra) X. We can 
summarize this by writing 

∼∼ = 
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as a symbolic statement that is outside the logical formalism. Furthermore, one is 
committed to the interpretation of negation as an operator and not as an operand. The 
calculus of indications provides a formalism where the mark (the analog of negation in 
that domain) is both a value and an object, and so can act on itself in more than one 
way. 

The mark as linguistic particle is its own anti-particle. It is exactly at this point that 
physics meets logical epistemology. Negation as logical entity is its own anti-particle. In 
our view, the world and the formalism we use to represent the world are not separate. 
The observer and the mark are (formally) identical. A path is opened between logic and 
physics. 

The visual iconics that create via the half-boxes of the calculus of indications a model 
for the mark as logical particle can also be seen in terms of cobordisms of surfaces (see 
Figure 67). There the boxes have become circles and the interactions of the circles 
have been displayed as evolutions in an extra dimension, tracing out surfaces in three 
dimensions. The condensation of two circles to one is a simple cobordism between two 
circles and a single circle. The cancellation of two circles that are concentric can be 
seen as the right-hand lower cobordism in this figure with a level having a continuum of 
critical points where the two circles cancel. A simpler cobordism is illustrated above on 
the right where the two circles are not concentric, but nevertheless are cobordant to the 
empty circle. Another way of putting this is that two topological closed strings can 
interact by cobordism to produce a single string or to cancel one another. Thus, a 
simple circle can be a topological model for the mark, for the fundamental distinction. 

 
Figure 67: Calling, crossing, and cobordism 

We are now in a position to discuss the relationship between logic and quantum 
mechanics. We go below Boolean logic to the calculus of indications, to the ground of 
distinctions based in the phenomenology of distinction arising with the emergence of 
concept and percept together, in the emergence of a universe in an act of perception. 
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Here we find that the distinction itself is a logical particle that can interact with itself to 
produce itself, but can also interact with itself to annihilate itself. The fundamental state 
is a superposition of these two possibilities for distinction. We are poised between 
affirmation of presence and the fall into an absence that we cannot know. This 
superposition is likely not yet linear in the sense of the simple model of quantum theory. 
Nevertheless, it is at this source, the place of arising and disappearing of awareness, 
that we come close to the quantum world in our own experience. As always, this 
experience is known to us in ways more intimate than the reports of laboratory 
experiments. It is the uniqueness of every experience, of every distinction. There can be 
no other one. There is only this and this and this yet again. 

Nevertheless, one can go on and consider quantum states related to the 
aforementioned logical particle. Crossing this boundary into quantum theory proper, one 
finds that topology and physics come together in this realm, and there is a complex 
possibility of much new physics to come and a new basis for quantum computing.19 It 
will take more thought and a sequel to this paper to begin to sort out the relationships 
between quantum theory and RD at the level of this form of epistemology. 

Remark. In Laws of Form we can express XOR(A, B) = AB = BA by the formula 

 
Note that if B is marked, then 

 
Thus the operation of XOR is the action of the mark itself. We can regard diagrammatic 
circuits such as we used in Figure 6 as applications of the mark in the form of the XOR 
operation above. In this way, the apparently awareness-dependent operations of the 
Laws of Form shift to the automatic discrimination capabilities of computer circuits and 
the forms of RD can be seen as written in the language of the calculus of indications. 
These points of view inform each other circularly. 

11.  Commentary 
Here is a collection of remarks and insights into RD that come from conversations 
between the authors of this paper over a number of years. 

1. Joel: When distinction-making is applied to a pattern there is a new pattern that is 
comprised of the variety of distinctions recorded. Thus, a new pass of distinction-
making can be applied to the pattern of distinctions, and this kind of a process can 
repeat itself recursively, indefinitely. 

                                            
19 For further details, see Louis H. Kauffman. “Knot Logic and Topological Quantum Computing with 
Majorana Fermions,” in Logic and Algebraic Structures in Quantum Computing and Information: Lecture 
Notes in Logic, ed. J. Chubb, Ali Eskandarian, and V. Harizanov (Cambridge: Cambridge University 
Press, 2016), 223-336. 
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2. Joel: I had made a discovery (mathematical in nature) of processes of RD (which is 
not patentable per se), and then invented a physical embodiment that performs 
these processes. 

3. Joel: The sensing of gradients (chemical concentrations, nutrients, etc.) in bacteria is 
well established and demonstrable. These are elements of distinction-making at very 
primitive levels. It is much harder to demonstrate recursive distinction-making in 
bacteria, because these are more abstract operations. It can be done however with 
live neuron circuits, and about 250K separate us now from results of such a demo. 

Eshel Ben-Jacob proposed that recursive distinction-making may be easier to 
demonstrate in genetic/immunological systems and it would also be much cheaper 
than the work planned with neurons. I am waiting for more details. At any rate, 
Eshel’s program is all interrelated, with recursive distinction-making being a unifying 
theme. 

4. Joel: I tend to think in terms of sensory-driven cognition that is constructed bottom-
up, beginning with Stage 1 – sensory distinctions; and proceeds to Stage 2 – 
indefinite recursion that starts out from Stage 1 and builds up successive layers of 
distinctions-of-distinctions. It is unlikely that these two low-level stages involve 
awareness. A working hypothesis is that some sort of awareness emerges from the 
primitive Stages 1 and 2 towards a level that you identified as Type 1. So, basically I 
tend to think of your Type 1 as an epiphenomenon that arises from Stages 1 and 2. 
[Type 1 for LK is a distinction that comes simultaneously with an awareness of that 
distinction.] I believe (actually I have shown) that Stages 1 and 2 are mechanizable. 
A missing link, of course, is the transition from Stages 1 and 2 to your Type 1. I am 
very sympathetic to constructivist dispositions and the place of human beings in the 
order of things. I agree that thought thinking itself is all we have got   but I see no 
contradiction in proposing that thought processes have their ultimate genesis in pre-
cognitive and pre-aware primitive processes of sensory-driven RD. 

5. Joel: Spencer-Brown has been very seductive to a lot of people and rightfully so. For 
most of us, drawing a distinction is a cognitive act that is performed by a full-blown 
human being. Spencer-Brown, of course, represents a distinction by some sketching 
of circles on a piece of paper by a human. I don’t object to this! That’s how much of 
mathematics is done. Scribbling of some symbols, sometimes in reference to some 
drawings of geometric or topological configurations. But doubts linger. Is it possible 
to entertain a situation where distinctions are drawn by acts that are short of being 
cognitive? And if this is possible, where is the observer, the self? And what 
constitutes the other? What will happen to the expected dynamics of “I and Thou”? 
Will there emerge a “becoming”? Becoming of what? It seems utterly futile to 
concoct a scenario of distinction-making at a level that is well below a cognizing per- 
son. (And what’s left of constructivism if the cognizing person is dissolved to his 
sensory modalities?) [LK: Note that Spencer-Brown never discusses how 
distinctions arise but always discusses distinctions that are accompanied by an 
awareness or an observer.] 
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Well, the thing is this. Sensory modalities, all of them, must make local distinctions in 
certain features (e.g., intensities) in signals that impinge on them. It has been 
studied in great detail in visual perception, beginning with the retina. Photoreceptors 
in the retina make local distinctions of light intensities that impinge on the retina. 
(Absent this, capacity for local distinctions amounts to blindness.) This local 
distinction-making is accomplished by comparisons that ultimately cause firing/non-
firing. These processes involve certain physiological/biochemical processes, in 
conjunction with massive neural circuits. The above type activity is clearly pre-
cognitive, involuntary, and (with sufficient abstraction) can be accomplished by 
computing machines as well. 

The essence of my patent document is RD (in one-dimension; but it is motivated 
directly by RD in 2D, which operates on 2D digital imager; 2D RD is abstracted from 
local distinction-making at the retinal level, as worked out by Weisel and Hubel in the 
early 1960s). 

I recently sketched for the history of my ideas (beginning in the early 1960s) and 
how these are embedded in the patent document, including the basis for fantomarks 
and their streaks. 

I think that the singular contribution of my particular RD processes is operationalizing 
the process of recursion on distinction-making. For it gives precise and detailed 
trace of what it entails, including an emergent dialectics, circularity, and so on. 

To be sure, other people have talked about recursive distinction-on-distinction 
(notably Maturana, in the context of his much higher-level “languaging”), but it 
should be clear that my RD is at a precognitive level, is mechanizable, and affords a 
thorough examination of its emergent properties. 

6. Joel: I noticed that thing – the hypothetical distinction (or contingent distinction) that 
hasn’t actually been made. It exemplifies the potency of distinction, even if not acted 
upon. These are the wonders of distinction, actual, virtual, potential, contingent, and 
hidden, to name only a few types. Now, when these are compounded via recursion – 
watch out!  

7. Joel: I have no objection to make a (provisional) distinction between the kind of 
distinction in RD automata and the Maturana and Varela kind of distinction. In itself, 
this act of distinction between two distinctions is a good example of what RD 
automata typically do. I think that, in the end, we’ll mutually discover that the 
distinction between the two kinds of distinctions will gradually dissolve. 

Here is a succinct description of the roles of distinction in RD automata: In RD 
automata, we have two basic elements that involve notions of distinction. 

1. An element of distinction-making. This element involves acts of distinguishing 
(verb) and is a process. 
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2. The results of distinctioning are a collection of distinctions; where a distinction is 
a product, object (noun). 

Usually these objects form a pattern of distinctions (the pattern as a whole is also an 
object) that is subject to further acts of distinctioning. 

Thus process and products alternate, recursively, where both process and products 
involve notions that relate to distinction. 

The process element involves distinction-making; and the product element is a 
pattern of objects, referred to as distinctions. (Each such distinction is a local, 
fragmentary boundary that records the result of prior acts of distinctioning.) 

It is crucial to understand that the alternation between process/product is recursive 
and indefinite in duration; also, that such indefinite recursion is guaranteed to drive 
the process into circularity. This, as a whole, represents the notion of RD in RD 
automata. (It is called BIP in the patent.) 

The RD automata model is motivated by natural vision. The initial stages are 
motivated by the retina, and the rest of the recursive process is postulated to take 
place in the lateral geniculate nucleus (LGN) and the visual cortex proper. 

In recent years, some researchers in advanced techniques in neural circuits (not 
artificial neural nets, but rather actual, live neural tissue) have entertained the 
hypothesis that a certain version of RD automata takes place in normal brain tissue 
activity. 

8. Joel: This is to systematize RD by dimension. 

* 1D – This is the case that is documented in the patent. It was pre-dated by the 2D 
case. A neighborhood comprises three elements, where a central element has two 
neighbors. There are exactly four combinations of relationships between an element 
and its two neighbors, representable by four ideographs, as described in the patent. 

* 2D – This is the case that relates to image processing; it goes back to 1964. A 
neighborhood (Moore neighborhood) is comprised of nine elements, where a central 
element has eight neighbors. There are exactly 256 combinations of relationships 
between a central element and its eight neighbors. These are representable by 256 
ideographs. 

The 2D case can be decomposed into a network of 1Ds. For comparison, John 
Conway’s Game of Life is also run on a Moore neighborhood but has only two states 
(as compared to 256 [!] states in the Game of RD). The richness and complexity of 
Game of Life is well known. Imagine the complexity of this 2D RD game. 

* 3D – A neighborhood is comprised of 27 elements, where a central element has 26 
near neighbors. There are exactly 226 (i.e., 67,108,864) combinations of 
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relationships between a central element and its 26 near-neighbors. Clearly, I didn’t 
investigate this case. Instead, I retreated to the 0D case; see below. 

* 0D – This is the case where RD starts with a single speck against the void. It yields 
the scenario of the baryon octet, as described elsewhere. 

9. Joel and Lou: Your comment is interesting. There are RD processes that are 
uniquely in the purview of human observers. There are certain RD processes that 
can be performed by automata, and there may also be RD processes in nature. The 
challenge is to integrate all three types into an encompassing framework whose 
unifying theme is RD processing. As to experimenting with CA, there are obviously 
untold numbers of possible CA, some of which have extremely interesting behaviors. 
In RD we focus on a singular cellular automaton, the one CA whose rule is recursive 
distinction-making. Once we grasp that distinction-making is a unique operation (in 
regards to perception and cognition) we realize that we must focus on the particular 
class of RD automata, in preference to the other zillions of CA possibilities that are 
available for our consideration and entertainment. I submit that RD automata are the 
needles in the haystack of CA. 

10. Lou: In programs that we design the initial automatic distinctions are distinctions that 
are put in by design. In the observation of such programs new distinctions arise for 
us, that can be used for further designs. But in nature, it is not obvious how those 
structures that we are calling distinction operators have arisen. We do not imagine 
that they occur by design. We do not imagine that they were ideas in the mind of a 
designer. I am very aware of this issue. as I have experimented at other levels with 
cellular automata and have seen how by varying rule structures one can find 
extraordinary recursive structures that one would never have imagined. Our 
relationship with our own constructions and with nature is complex. 

11. Joel: Transdistinction operates on patterns of raw sensory data to produce a first 
pass of local distinction-making in such patterns. Further processing is relegated to 
higher centers in the nervous system. (For example, this is essentially what the 
retina does [in part] in vision.) This first pass is relatively easy to accomplish by 
computing devices. Thus, impairment in a sensory organ can be overcome by using 
such prosthetic devices. The next issue, of course, is how to connect the output of 
the prosthetic device to higher centers. In vision, for example, a connection needs to 
be done to the optic nerve, or directly to the lateral geniculate nucleus, from which 
the normal vision pathways would be followed to the visual cortex. Assuming that 
such devices will become reality, would it modify our notion of the observer? Namely, 
a human observer so equipped would initiate his or her observation by an automatic 
device that does distinction-making. So, there you have it – a hybrid of 
human/machine in a long sequence of distinction-making; some automatic and some 
human-based. 

12. Joel: Yes, quids and quods seem to be generalized notions of containers/extainers.  
[Lou: Extainers have the formalism E = >< while containers have the formalism C = 
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<>.] Extainers are open to interaction from the outside. Containers are closed forms 
not likely to interact. But note that 

EE = ><>< = > C < 

and 

CC = <><> = < E >. 

Thus an extainer interacts with an extainer to produce a container, and a container 
interacts with a container to produce an extainer. We can distinguish between 
containers and extainers by allowing containers to move freely (commute) with other 
elements. Then 

EE = > C < = C >< = CE 

and we see that C can be the catalyst for self-replication. And if we regard the 
extainer as the environment, then the movement 

<> → < E > 

can be seen as our earlier abstraction of the emergence of Watson and Crick 
strands from the environment. We obtain the self-replication of DNA type: 

<> → < E > → <><>.20 

Inasmuch as quids and quods come about literally out of nowhere (they are 
byproducts of RD that operates on arbitrary initial unspecified things, including 
fantomarks), their natural algebra may be significant. 

Quids and quods (discrete/continuous) are self-organized. They enter into an 
elaborate dance that is not choreographed by external manipulation. The dance has 
classical dialectical patterns. 

Replication is part of the game. There are at least two types of replication: 

1. For RD with fixed boundaries, there is guaranteed circularity. Thus a whole bunch 
of strings are periodically replicated. These happen to be 4-letter strings with 
certain complementarity properties. Close enough to DNA, but not quite the 
same. 

2. For RD with shifting extainers (such as in the Baryon Octet scenario), there is 
replication of patterns via self-similarity in the trace. In effect, a basic pattern 
reappears periodically. 

                                            
20 See Kauffman, “Iterants, Fermions, and Majorana Operators”; Kauffman, “Biologic”; and Kauffman, 
“Self-Reference, Biologic and the Structure of Reproduction” for more about extainers and containers. 
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All in all, I propose to consider the algebra of quids/quods (which extends your [Lou 
K.]) notions of containers/extainers) somewhere at the foundations of your 
marvelous edifice. 

There is an example of this in Figure 2 on page 11 of my paper “Steganogramic 
Representation of the Baryon Octet in Cellular Automata.” This is an RD that starts 
out with a first arbitrary distinction. Focus on lines 1 thru 8. 

‘0’ is like your container that fuses <> together. It may contain at most one thing. 
There is a notion of extended container, written: < *   * >, which may contain a 
bunch of things. (It shows in Figure 2 as [====   =]: C is an element of quids, and 
the extended container is a quod, as defined in the patent document.) Now, make 
the following substitutions in Fig. 2: 

0 is C 

] is > 

[ is < 

= is * 

Lines 1 thru 8 will look like this: 

>C< 

>CCC< 

>C<*>C< 

>CCCCCCC< 

>C<*****>C< 

>CCC<***>CCC< 

>C<*>C<*>C<*>C< 

>CCCCCCCCCCCCCCC< 

and you can continue thru line 16 and beyond. Within that 16-line diagram you can 
identify 10 configurations that look like this: 

>C< 

CCC 

<*> 
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Those 10 configurations are self-organized similarly to the Pythagorean Tetractys.21 
Those configurations allow us to uncover the configuration of the baryon octet that is 
embedded therein.22 

Thus the physical interpretation of > and < are up and down quarks and * is a 
strange quark. 

Let’s recoup what we’re doing. We start out with a first distinction and apply RD to it. 
We develop the trace of a cellular automaton that does RD. Within that trace we 
discover the Pythagorean Tetractys, within which we discover the eight particles of 
the baryon octet expressed in terms of their constituent quarks. Note: There ought to 
be a link to SU(3), which still eludes me. 

13. Lou: Clearly we have just begun this study. There is much more to come. 

Copright © 2016, Louis Kauffman and Joel Isaacson. All rights reserved. 
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21 Isaacson, “Steganogramic Representation,” Figure 3, p. 12. 
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Editors’ Notes: The Board of Directors of Kepler Space Institute (KSI) and the editors 
of the Journal of Space Philosophy take pride in providing the publication platform for 
Dr. Joel D. Isaacson and Dr. Louis H. Kauffman to inform the public on the current 
status of RD. That term is the scientific description of “Nature’s Cosmic Intelligence” 
(Joel Isaacson, Journal of Space Philosophy 1, no. 1 [Fall 2012]: 8-16) that Dr. Isaacson 
discovered in 1964, Since that date he has been the lead scientist and scholar in 
researching this information stream phenomenon that Dr. Bernd Schmeikal – whose 
supporting paper is also in this Special Science Issue of the Journal of Space 
Philosophy – has called “a universal creative system.” Dr. Isaacson described RD in 
April 2011 as “a finding that is advanced as a law of nature, perhaps on the par of 
gravity.” Over the past two years, Dr. Louis Kauffman, one of America’s most 
distinguished mathematicians and physicists, has worked intensively with Dr. Isaacson 
to create this latest scientific explanation for the world. For further information on RD, 
see homepages.math.uic.edu/~kauffman/RD.html. Bob Krone and Gordon Arthur. 
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Basic Intelligence Processing Space 
By Bernd Schmeikal 

Abstract 
This paper investigates a universal creative system. Originally, this was referred to by 
its creator as an autonomic string manipulation system. Forty years ago, it was capable 
of such important operations as tetracoding (TTC) and binary basic intellector 
processing (BIP). After going deeper into the set of possible transformations, in both a 
sequential and a parallel manner, Joel Isaacson and Louis Kauffman had brought this 
down to the essential action of Recursive Distinctioning (RD). Considering the dual 
process of antecursive conflation, we can unpack a given creation – like a page taken 
out from a libretto – and trace it back to some initial headlines. We unpack the creation 
of our Minkowskian space-time with its geometric algebra, and show how it can be 
made a material representative of a BIP. So, after clarifying a few issues of 
ideographing, we state that the processes BIP, digital image processing, and TTC by 
RD, which were invented and investigated by Joel Isaacson, are real articulations of the 
natural space-time with its material systems of interacting particles. That is to say, our 
universe may be a representation of Isaacson’s system, and entertainingly, with his US 
Patent specification 4,286,330, it seems he has patented creation. 

Keywords: Universal creative systems, autonomic string manipulation, intellector 
processor, Recursive Distinctioning, antecursive conflation, Minkowski algebra, image 
processing, primordial space creation, retinoid cortical space, standard model of particle 
physics. 

Prologue 
This paper discusses a universal, dialectic, intelligent process, whose creator, 40 years 
ago, endowed it with some clumsy-looking names like autonomic string-manipulation 
system and basic intellector processing (BIP). This humble, dynamic system, featuring 
Hegel’s triadic phenomenology of mind,1 is very creative. It is now capable of reckoning 
up words in the retinoid visual cortex, and acts of creation, almost like the spill over from 
an unbounded living universe. In his early work, Joel Isaacson has used eleven string-
manipulation operations to study the properties of his creation. Then, he realised that 
the tetracoding (TTC) and BIP were most important operations anyway. Kauffman and 
Isaacson have studied this system for a long time. They saw that there is a unary 
procedure on strings that is necessary for understanding creational processes, namely 
Recursive Distinctioning (RD). 

My task is now to clarify some iconic coding issues brought in by the original operation 
of ideographing and to couple the creational process to theoretical physics. After all, we 
formerly based our synchronous template of the Minkowski space algebra and 

                                            
1 G. W. F. Hegel, The Phenomenology of Mind, trans. J. B. Baillie (London: George Allen & Unwin, 1966); 
G. W. F. Hegel, The Phenomenology of Spirit, trans. Terry Pinkard, terrypinkard.weebly.com/ 
phenomenology-of-spirit-page.html (accessed February 13, 2016). 
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equations of motion on this operation; the standard model of high energy physics 
(HEPhy) and its symmetries are emerging results from such a recursive, scrambled, 
and entangled iterative process. I will show in exact terms how and why Isaacson ‘s 
self-organizing string manipulation system creates synchronous iconic memories of 
objects in Minkowski algebra. Since I have found that the symmetries of space-time 
algebra are essentially those of the standard model of physics, it is reasonable to ask 
how an iteration may accidentally create an octet of the symmetric unitary group 𝑆𝑆𝑆𝑆(3). 
Indeed, both, the Clifford algebra of Minkowski space and the standard model of particle 
physics are deep and dynamically stable properties of some peculiar system of linear 
processing. Now, BIP and digital image processing (DIP) produce two important 
representations of results in our material world. The first is given by hardware 
implementations, the second by material assemblies in our familiar, relativistic space-
time. It is interesting to note that the autonomic string-manipulation system, published 
with US Patent 4,286,330 on August 25, 1981, was a continuation of an application filed 
in April 1976. It referred to a related document having same title, filed in December 
1975.2 However, the “Dialectical Machine Vision” report came much later, namely in 
July 1987. It contained the ideographs of DIP cells combined with the hesitant 
denotation of “the ‘alphabet’ of the visual cortex,” and some cryptic sentences on page 
35: “For many years I have resisted describing DIP in ‘neural’ terms.” 

So, one would conclude that the retinoid ideographs were much younger than the 
autonomic string-manipulation system. But that would be wrong. On October 25, 2015, 
Joel wrote me, “I discovered the 16 icons a long time ago, in 1964. I was developing 
image processing techniques to analyse 2D digitised images. Two neighbourhoods 
have been available to me: 8-cell Moore neighbourhood and 4-cell von Neumann 
neighbourhood. The first led to 256 icons, where the 16 icons (that you now work with) 
were a subset. And the second led to 16 icons that are exactly identical with your 16 
icons.” There were some graphics with a description mailed to Louis Kauffman in 2012 
when Louis was visiting at the Isaac Newton Institute in Cambridge. A special digitised 
radiograph was scanned by the film input into digital automatic computer and fed 
directly into the core memory of an IBM 7094 at NASA’s Goddard Space Flight Center, 
Greenbelt, Maryland. It was thereafter analysed with the aid of a first tiny alphabet of 
256 icons based on the 8-cell Moore neighbourhood and materialised by a Stromberg-
Carlson 4020 microfilm recorder from NASA. 

The computerised ideograph recorded fragments of the local boundaries of images. A 
little square has eight neighbouring squares. Each of them may be black or white. This 
makes a total of 256 combinations, the possible marks of a Moore filter. One goes from 
pixel to pixel, or in a font printout from character to character, and identifies the 
neighbourhood as one of those 256. Clearly, it is just as informative if one counts the 
von Neumann neighbourhoods. That makes no difference. However, the alphabet is 
restricted to the 16 necessary letters. Then, some of these icons were used, but their 
meaning as generators in algebraic modules was not yet explained. What is an 
advantage, mathematically, is that those 16 provide a basis of four, which can 

                                            
2 Application Ser. No. 674,658, filed April 7, 1976, and Disclosure Document entitled “Autonomic String-
Manipulation System,” No. 045773, filed on December 29, 1975. 
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immediately be identified within the geometric algebra of space-time. After all, logic 
connectives have a plane markedness. But then it was considered a virtue to proceed in 
a line with a minimal neighbourhood system to avoid perceptron-type models because 
of the disrepute attached to them,3 since Minsky and Papert had shown up their 
limitations. It was preferable to proceed with linear strings and a minimal 
neighbourhood, not in 3-line arrays or similar planar domains. 

Components of Autonomic Intelligence 
When, in April 1976, Joel Isaacson wrote a continuation of his autonomic string 
manipulation system, he wanted to design something extremely primitive, something 
that would take off with almost no processing capability, no memory or internal 
description of outer configurations, and that would process input regardless of type, 
classification, and complexity “in a blind, purposeless, and primitive fashion.” These 
were the words Isaacson chose in his 1981 patent specification.4 He must have felt that 
such a stupid processor, being aware of the presence of just a few nearest neighbours, 
would nevertheless, by the runtime, disclose what to us may appear as unterminated 
intelligence. To be precise, the intellector process, as it was called then, is not 
unbounded, but has definite boundaries; yet, its intelligence develops in an open-ended 
fashion. The beauty of the intelligent forms it (re)creates is continuing indefinitely, and 
while it creates various forms of remembrance, some gilded, some just surprising, it 
shows to us what Hegel once meant by his phenomenology of mind, with its 
reappearing and self-reproducing cycles driven by contradiction and synthesis. What 
once seemed so strange and superhuman, almost inhuman, all of a sudden turns out to 
be a self-evident feature of a most simple form of process driven by contact. 

The basic processor manipulates strings of symbols or marks such as, say, the word 
23f3f23trxff223. But we might just as well consider linear sequences of pixels with a 
grey level, or colour value, as inputs. What we need for manipulation is awareness or an 
identification of a given character. This character can be prehended or sensed or 
recorded by human beings, in which case it is also correlated with semiotic terms such 
as sign, icon, pictogram, index, token, ideogram, ideograph, and so forth. So we have 
sensual and cognitive attributes guiding a string. These perceptions and annotations 
allow us to refer to such a character as an objective element or a datum object.5 An 
element that cannot be perceived in that way is referred to as a fantomark. Strings 
containing fantomarks are called fantomark strings. We may denote it as basic 
intelligence if the processor acts according to the neighbourhood. So, we have 
fundamental operations acting on strings, reading them line by line. But we also have 

                                            
3 Joel D. Isaacson, “Dialectical Machine Vision, Applications of Dialectical Signal-Processing to Multiple 
Sensor Technologies,” Report prepared for the Strategic Defense Initiative Organization (Arlington, VA: 
Office of Naval Research, 1987), 35. 
4 Joel D. Isaacson, “Autonomic string-manipulation system,” US Patent No. 4286330 A, priority 1976, 
(publication date 1981), 8, patft.uspto.gov/netacgi/nph-Parser?Sect2=PTO1&Sect2=HITOFF&p=1 
&u=/netahtml/PTO/search-bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/4286330. This 
was a continuation of application Ser. No. 674,658, filed April 7, 1976 with no cross-references to related 
applications, and a single relevant reference to a related disclosure document entitled Autonomic String-
Manipulation System, No. 045773, filed on December 29, 1975. 
5 Isaacson, “Autonomic string-manipulation system,” columns 3-4. 
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parallel, quasi-synchronous perception of the nearest neighbours. The identification of 
symbols in the immediate neighbourhood of an observed character in the linear 
sequence of marks in a string allows us to introduce techniques of RD, namely those in 
Isaacson’s patent, and the procedures of streaking and TTC. Consider the closed string 

2 3 𝑓𝑓 3 𝑓𝑓 2 3 𝑡𝑡 𝑟𝑟 𝑥𝑥 𝑓𝑓 𝑓𝑓 2 2 3 having definite length 15 

If we read from left to right and identify distinctions from neighbours, streaking brings on 

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 with a zero appended to the end of a code sequence, and 

𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐵𝐵 𝐶𝐶 𝐴𝐴 are the tetracoded characters of the string. 

For example, consider the second character in the original string, namely 3. It has left 
neighbour 2 and right neighbour 𝑓𝑓, both distinct from 3, hence tetracode 𝐴𝐴. Next, 𝑓𝑓 has 
left and right neighbours 3, both distinct from 𝑓𝑓, hence tetracode 𝐴𝐴. We obtain a code 
mark 𝐵𝐵 at location …  𝑥𝑥 𝑓𝑓 𝑓𝑓… because the left neighbour is distinct from 𝑓𝑓 and the right 
neighbour is not distinct. Finally, we obtain mark 𝐶𝐶 at location …  2 2 3 …. 

The operations of streaking and TTC, on a topological basis of the nearest neighbours 
in linear sequences of marks, represent the most relevant methods in BIP. Clearly, it is 
possible to encode a tetracoded string by TTC. Isaacson gave the beautiful example of 
self-referential TTC of the word BEGINNING and the sentence SEE PERFECT 
CYCLE.6 We add the ENDING on the right of Table 1. 

                                            
6 Isaacson, “Autonomic string-manipulation system,” 3. 
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Table 1 a, b: Re-entering Strings to the Operations of TTC 

 

(b) 1 2 3 4 5 6 
       
00 E N D I N G 
01 A A A A A A 
02 B D D D D C 
03 A B D D C A 
04 A A B C A A 
05 B C A A B C 
06 A A B C A A 

The original invention, BIP, is concerned with 
unary operations on single strings, the 
operands. But it also allows for context-
sensitive rewriting rules. Simultaneous 
application of rewriting rules to all characters 
in the operand is denoted as parallel. 
Sequential operation within the operand from 
the leftmost to the rightmost is called 
sequential. Figures 4A to E of the patent show 
how the array of tetracode strings can be 
transposed onto icons, broken lines, and 
streaks which can, again, be re-entered into a 
TTC procedure. Operations that are neither 
parallel nor strictly sequential are possible, 
and they are referred to as scrambled. 

Notice that although we work with a minimal neighbourhood involving two neighbours 
only, we obtain fourfoldness through the four code-letters 𝐴𝐴,𝐵𝐵 𝐶𝐶,𝐷𝐷. In image processing 
with constant line length, preserving parallel connection of lines, two neighbours with 
four letters pack the same information as four neighbours with two letters, that is, a von 
Neumann neighbourhood. 

Ideographing 
Linear Iconic Single Strings 
As we obtained a code mark,𝐵𝐵, say, at location …  𝑥𝑥 𝑓𝑓 𝑓𝑓… because the left neighbour 
was distinct from 𝑓𝑓 and the right neighbour was not distinct, and we obtained a 𝐶𝐶 mark 
at location …  2 2 3 …, it was easy to insert icons:  for B and  for C. Considering the A 
– no neighbour identical with the mark – as somehow isolated, we can substitute the A 
with . The D indicated identical left and right marks. Hence, it seems good to indicate 
that opening towards both sides by the icon . In this way, every single string can be 
rewritten as an iconic word. For instance, we obtain the following for the first three 
lines.7 

                                            
7 Isaacson, “Autonomic string-manipulation system,” 3, Figure 4b. 

(a) 1 2 3 4 5 6 7 8 9 
          
00 B E G I N N I N G 
01 A A A A B C A A A 
02 B D D C A A B D C 
03 A B C A B C A A A 
04 A A A A A A B D C 
05 B D D D D C A A A 
06 A B D D C A B D C 
07 A A B C A A A A A 
08 B C A A B D D D C 
09 A A B C A B D C A 
10 B C A A A A A A A 
          
11 A A B D D D D D C 
12 B C A B D D D C A 
13 A A A A B D C A A 
14 B D D C A A A B C 
15 A B C A B D C A A 
16 A A A A A A A B C 
17 B D D D D D C A A 
18 A B D D D C A B C 
19 A A B D C A A A A 
20 B C A A A B D D C 
21 A A B D C A B C A 
22 B C A A A A A A A 
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In this case, the operands are single strings and the lines are vertically closed by the 
horizontal bars of the icons. 

Parallel Three-Line Processing with von Neumann Neighbourhoods 
Ideographing sequences of single strings by four icons, , , , , is straightforward 
and intuitively appealing. Yet, there are certain restrictions when it comes to interpreting 
the meaning with respect to the geometry of space-time. Namely, there exists a specific 
alphabet, which I called LICO (abbreviating linear iconic calculus), having 16 icons with 
an algebraic basis of four elements. If we want to incorporate space-time processing, 
we have to consider a peculiar scrambling. We have to consider a parallel processing of 
three single strings, the first, in a way, representing some internal past of the run-time, 
while the third is a future-string result. Consider the alphabet 

 ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , .  (1) 

and a Hegelian cycle with strings numbered 11 to 22 from Table 1a. Rewriting those 
lines gives Figure 1: 

 
Figure 1: Three-line processing and 12 of 16 icons with corresponding von Neumann 

neighbourhoods. 

Note that lines 11-16 are palindromic with lines 17-22. 

The Electronic Circuits of the Intellector 
In about 1982, the field of cellular automata (CA) started to take off, and by 1985, 
Isaacson succeeded in merging BIP and DIP with CA. While DIP seems to disclose 
higher complexity than BIP, the creational properties of the BIP must not be 
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underestimated. In the second part of his preface to the report, Isaacson has listed 
some of these: autonomic mode of processing, autonomic error correction, autonomic 
mode of 3-level memory, dialectical patterns, autonomic syllogistic inferences, limit 
cycles or attractors (Hegelian cycles), autonomic generations of palindromes, and 
complementarity of 4-letter strings. The most important processing unit carries out an 
iterative triunation of the streak of a given string and its successors. This amounts to a 
Hegelizing of the process by an electronic circuit denoted as the intellector (Figure 2), 
which essentially operates on binary sequences of given length. 

 
Figure 2: Basic circuitry of the intellector processor. 

What was important for my own work was the appearance of the XNOR gates, the first 
from the left formed by Components 3, 4, and 5, because they represent a processing 
unit vector of the Clifford algebra of space-time. We shall come to this in a while. 
Isaacson described the important detail relating to XNOR gates and the circuit in Figure 
7 of the patent. There are three binary signals (0 or 1) for A, B, and C at the input ports 
of 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3. If all three signals are 0 or all three signals are 1, then the output is 1; 
otherwise, the output is 0. The logic expression describing the switching is given by (A 
XNOR B) AND (B XNOR C). This describes the operation triunation in the patent, and 
also Wolfram Rule 129. These are identical, but triunation predates Rule 129 by many 
years. Put in tandem, we get the combinatory circuitry of the whole of Figure 7 from the 
patent. As for oscillators, to realise the oscillators, we hold A and C fixed at 0 or at 1. If 
we set A and C at 0, we can start with 𝐵𝐵(0) = 0 or 𝐵𝐵(0) = 1. 

For 𝐵𝐵(0) = 0 we get the sequence: 

𝐵𝐵 =  0, 1, 0, 1, 0, 1, … (2) 
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For 𝐵𝐵(0) = 1, we obtain 

𝐵𝐵 =  1, 0, 1, 0, 1, 0, … 

So, the smallest recursive triunation behaves like unitary oscillators, not unlike 
Kauffman’s oscillatory sequences of the I and J.8 It turns out that these sequences can 
represent another generating unit of the Minkowski algebra. To understand the 
operations and dynamics of the autonomic string-manipulation system and the DIP, it is 
necessary to study the papers of Joel Isaacson. For the present, I just wish to refer to a 
few facts that concern the next section. 

• there are signals; 
• they are perceived as fourfold by TTC; 
• they are rewritten by ideographs; 
• they can be streaked; 
• they are processed by serially connected XNOR gates; 
• they begin ignorant, with almost no processing capability and no 

memory or internal description of outer configurations, and they 
process inputs in a blind, purposeless, and primitive fashion. 

Real-World Components 
Space-time, as a cognitive reality, represents a synchronous template, which I have 
constructed in order to coordinate real events. However, as a physical reality, space-
time is an intelligent processing of energy. Years ago, when I tried to understand the 
relation between space-time and the standard model of HEPhy, it was not yet so clear 
that this processing had its own intelligence. But it was already evident that the central 
event under investigation was a processing of energy. It was known that space-time, be 
it explained by Euclidean space and separate time, or by relativistic, compound space-
time, was connected with the concept of symmetry. In the simplest scenario, it would be 
natural to endow a Dreibein or a cube with an octahedral symmetry 𝑶𝑶ℎ or with a Bravais 
lattice, and, clearly, such an octahedral crystal – a diamond – would bring about a 
scattering of energy and of the observable degenerate energy levels. Could it be 
possible that space-time was responsible for the emergence of multiplets of elementary 
particles and energy spectra? These were the important questions, then. First, one had 
to identify the object that was worth being denoted as a mathematical agent of real 
space-time. Next, one had to find out about its symmetries. I felt that the symmetries of 
matter, the HEPhy standard, were essentially given by the symmetries of space-time. 
This led to a thirty-year endeavour, trying to conserve essential knowledge and at the 
same time to break away from the mainstream. It ultimately led to the book, Decay of 
Motion – The Anti-Physics of Space-Time.9 But the first breakthrough was published 

                                            
8 Louis H. Kauffman, “Space and Time in Computation, Topology and Discrete Physic,” In Proceedings of 
the Workshop on Physics and Computation – PhysComp ’94, November 1994 (Dallas: IEEE Computer 
Society Press, 1995), 44-53. 
9 Bernd Schmeikal, Decay of Motion-The Anti-Physics of Space-time (New York: Nova, 2014). 
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only in 1996 in a book about Clifford algebra, after I conversed with Pertti Lounesto.10 
This was “The Generative Process of Space-Time.”11 

A picture arose in which several new ideas came together. First, it became clear that 
the complex matrices of the symmetric unitary group 𝑆𝑆𝑆𝑆(3,ℂ) were elements of the 
matrix algebra 𝑀𝑀𝑀𝑀𝑡𝑡(4,ℂ), which represented the complexified Clifford algebra ℂ⨂𝐶𝐶𝐶𝐶3,1. It 
could be that the standard model of HEPhy represented a space-time group rather than 
an auxiliary gauge group. In “Minimal Spin Gauge Theory,”12 I investigated this 
alternative in greater detail, building on a preliminary inquiry of Roy Chisholm 
concerning “Unified Spin Gauge Theories and the Tetrahedral Structure of 
Idempotents.”13 It seemed to me that nature did not identify direction in such a definite 
way as we do in our laboratories. There was some basic uncertainty that disappeared in 
the stable arrangement of matter. Today, these features can be recognised as indicative 
of ignorance like that in the generative processes designed by Joel Isaacson. 

Autonomic Intelligence 
• Signals, marks, or polarised characters 

appear in diachronic succession. 
• Processing is run in a blind, purposeless, 

and primitive fashion. 
• No memory or internal description of outer 

configurations. 

Physics 
• Field quantization, fermions, condensates, 

and collapsing wave-functions are 
observed. 

• Quantization is proceeding ignorant. 
• No memory of the coding of outer 

configurations of coordinate base units. 

Suppose, we had a triangle such as the one given by our image of a Euclidean Dreibein 
with three unit vectors (Figure 3). 

                                            
10 Pertti found out that I was just about to rediscover Clifford algebra. I investigated the multivector groups 
of the Pauli algebra, that is, the Clifford algebra of the Euclidean 3-space. This algebra is generated by 
the three-dimensional Euclidean space, but can itself be considered as a vector space having dimension 
23 = 8. Surprisingly, the Minkowski space was a subspace of this orthogonal space generated by the 
Pauli matrices. I saw, then, what some had already known for a long time, that the four Dirac matrices 
used in theoretical physics also generated such a linear space of multivectors. This could be the 16-
dimensional Clifford algebra of the Minkowski space, endowed with an indefinite metric {1,3}, what we 
denote as 𝐶𝐶𝐶𝐶1,3, or it could be the Clifford algebra generated by the space in the opposite metric, the 
Lorentz metric, namely 𝐶𝐶𝐶𝐶3,1. The latter has a 4 x 4 matrix representation, with real entries only. It is called 
Majorana algebra after Ettore Majorana, who first investigated nuclear weak decay with such real tools of 
differential geometry. 
11 Bernd Schmeikal, “The Generative Process of Space-Time and Strong Interaction – Quantum Numbers 
of Orientation,” in Clifford Algebras with Numeric and Symbolic Computations, ed. R. Ablamowicz, P. 
Lounesto, and J. M. Parra (Boston: Birkhäuser, 1996), 83-100. 
12 Bernd Schmeikal, “Minimal Spin Gauge Theory – Clifford Algebra and Quantumchromodynamics,” 
Advances in Applied Clifford Algebra 11, no. 1 (2001): 63-80. 
13 J. S. R. Chisholm, “Unified Spin Gauge Theories of the Four Fundamental Forces,” in Clifford Algebras 
and their Applications in Mathematical Physics, ed. A. Micali et al. (Dordrecht: Kluwer,1992), 363-70; J. S. 
R. Chisholm, “Tetrahedral Structure of Idempotents of the Clifford Algebra Cl3;1,” in Clifford Algebras and 
their Applications in Mathematical Physics, ed. A. Micali et al. (Dordrecht: Kluwer, 1992), 27-32. 
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Figure 3: Rotation as recoding. 

Consider a rotation that turns 𝑒𝑒1 into 𝑒𝑒2, 𝑒𝑒2 into 𝑒𝑒3, and 𝑒𝑒3 into 𝑒𝑒1 Such a rotation, in a 
pure informatics sense, where nothing is known about such things as continuous 
motion, can be conceived as mere recoding. Mathematically, such a movement is 
represented by a permutation cycle (1, 2, 3). Now, consider that the process of nature in 
the deepest layer of dynamic phenomena cannot make those distinctions that we, the 
observers, are ready to make within the stratum of macrophysics. That could mean that 
the oscillators of field quantization, just like all the other movements we conceive of, do 
not distinguish between different base units of the Clifford algebra. I compile all such 
movements as quantum motion instead of as quantum mechanics. It might be that 
although the process of nature is ignorant of those differences the observers make 
within the macro-layers of the material world, it nevertheless brings those differences 
about. That would mean that the forces of nature, the ultraweak, the electromagnetic, 
the weak, and the strong interactions, give rise to the emergence of our concept of 
macroscopic space-time, in the form of a geometric Clifford algebra of the Minkowski 
space with its Lorentz metric, clearly, by making use not only of matter as space-time, 
but also of our brain cells, which somehow must incarnate this space-time as an inner 
neuronal arrangement. It seemed somewhat complicated to verify this idea, and I had to 
go slowly, step by step. 

In Minimal Spin Gauge Theory, there were investigations of the relations between the 
orientation symmetries and the 𝑆𝑆𝑆𝑆(3), the action of reflections determined by the 
tetrahedral idempotent lattices. But, then, sociologically, it seemed, something had 
dazed us. The global reverberations and the anthropophobia before, during, and after 
the world wars had led to considerable rejections of insight and knowledge. These 
social dislocations probably had more important consequences for science than our 
later correcting measures of quantum deformation. Einstein had established an inner 
distance to quantum theory, and only lately had he realised the importance of 
Minkowski’s work. Galina Weinstein confirmed what Gerhard Frey had said to me: “After 
he had received assistance from his friend, Marcel Grossmann, in late spring 1912, he 
found the appropriate starting point for a generalization”14 in terms of Minkowski’s 
approach to space-time. He began to use the line element invariant under the Lorentz 
group. How come Einstein was side-tracked? Far off the beaten track of quantum 
mechanics, he began to describe the gravitational field by a metric tensor field. But if the 
properties of the space-time could describe gravitation, the ultraweak interaction, why 
could it not just as well, and even from the outset, describe the occurrence of quantum 
                                            
14 Galina Weinstein, Genesis of General Relativity – Discovery of General Relativity, arxiv.org/ftp/ 
arxiv/papers/1204/1204.3386.pdf (accessed February 4, 2016). 
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numbers of motion? I had to begin a back calculation. The following one is one of the 
many small, but important stages that had to be carried out to reach the aim. Particles 
should create their own space-time and HEPhy symmetries. If there existed the above 
fundamental uncertainty of quantum motion, we first had to investigate the algebraic 
object that carried out the transpositions of line elements in the basis of the Clifford 
algebra of the Minkowski space. This discrete group of 1,152 graded elements was 
found and was denoted as the reorientation group of the geometry 𝐶𝐶𝐶𝐶3,1. It is a 
hyperoctahedral group generated by 24 multivectors having the form 𝑠𝑠𝜒𝜒𝜒𝜒 = 𝐼𝐼𝐼𝐼 −
2𝑓𝑓𝜒𝜒𝜒𝜒  (𝜒𝜒 = 1, … ,6; 𝑘𝑘 = 1, … ,4) where the 𝑓𝑓𝜒𝜒𝜒𝜒 are idempotents, primitive in the algebra 𝐶𝐶𝐶𝐶3,1 
having six colours 𝜒𝜒 and four indices determined by the basis of the Minkowski space. 
Accordingly, we take 

𝑓𝑓1 = 1
2

(𝐼𝐼𝐼𝐼 + 𝑒𝑒1) 1
2

(𝐼𝐼𝐼𝐼 + 𝑒𝑒24) 𝑓𝑓2 = 1
2

(𝐼𝐼𝐼𝐼 + 𝑒𝑒1) 1
2

(𝐼𝐼𝐼𝐼 − 𝑒𝑒24) (3) 

𝑓𝑓3 = 1
2

(𝐼𝐼𝐼𝐼 − 𝑒𝑒1) 1
2

(𝐼𝐼𝐼𝐼 − 𝑒𝑒24) 𝑓𝑓4 = 1
2

(𝐼𝐼𝐼𝐼 − 𝑒𝑒1) 1
2

(𝐼𝐼𝐼𝐼 + 𝑒𝑒24) 

These primitive idempotents are Weyl’s erzeugende einheiten for a linear subspace 
spanned by 𝑐𝑐ℎ1 = 𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠ℝ{𝐼𝐼𝐼𝐼, 𝑒𝑒1, 𝑒𝑒24, 𝑒𝑒124}, and there are six such subspaces with positive 
definite metric {+  +  +  +} in the Clifford algebra of the Minkowski space ℝ3,1 ≝
𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠ℝ{𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, 𝑒𝑒4}, having the indefinite signature of the Lorentz metric {+  +  +  −}. 
The quantities in the corners of Salomon’s seal (Figure 4) span a commutative 
subspace, the colour spaces 𝑐𝑐ℎ𝜒𝜒. An idempotent primitive in 𝐶𝐶𝐶𝐶3,1 represented by 𝑓𝑓1, 
endows 𝑐𝑐ℎ1 with a 1-norm. Take any 𝑋𝑋 = 𝑀𝑀𝐼𝐼𝐼𝐼 + 𝑏𝑏𝑒𝑒1 + 𝑐𝑐𝑒𝑒24 + 𝐼𝐼𝑒𝑒124 ∈ 𝑐𝑐ℎ1 and verify that 

𝑓𝑓1𝑋𝑋 = (𝑀𝑀 + 𝑏𝑏 + 𝑐𝑐 + 𝐼𝐼)𝑓𝑓1 with 1-norm 𝐿𝐿 = 𝑀𝑀 + 𝑏𝑏 + 𝑐𝑐 + 𝐼𝐼. (4) 

Therefore, we say that the 𝑓𝑓1𝑋𝑋 provides an eigenform for a 1-norm.15 Take 𝐿𝐿 = 𝑀𝑀 + 𝑏𝑏 +
𝑐𝑐 + 𝐼𝐼 = 1 to obtain 𝑓𝑓1𝑋𝑋 = 𝑓𝑓1. It can be shown that each colourspace 𝑐𝑐ℎ1, 𝑐𝑐ℎ2, … is iso-
morphic with the 4-fold real ring 4ℝ = ℝ⨁ℝ⨁ℝ⨁ℝ.16 The proof goes as follows: 
Consider the idempotent 

𝑓𝑓 = 1
2

(𝐼𝐼𝐼𝐼 − 𝑒𝑒1) (5) 

not primitive in the Minkowski algebra (but it is primitive in the Pauli algebra 𝐶𝐶𝐶𝐶3,0) and 
the isospin 

Λ3 = 1
2

(𝑒𝑒24 − 𝑒𝑒124) (6) 

Both are elements in colourspace 𝑐𝑐ℎ1. For any natural number 𝑠𝑠 ∈ ℕ we verify the 
identities 
                                            
15 Louis H. Kauffman, “Reflexivity and Eigenform – The Shape of Process,” Constructivist Foundations 4, 
no. 3 (2009): 121-37; Heinz von Foerster, “Objects: Tokens for (Eigen-) Behaviors,” in Observing 
Systems, Systems Inquiry Series (Seaside, CA: Intersystems Publications, 1981), 274-85. 
16 Schmeikal, “Minimal Spin Gauge Theory,” 63; Bernd Schmeikal, “Transposition in Clifford Algebra,” in 
Clifford Algebras – Applications to Mathematics Physics and Engineering, ed. Rafal Ablamowicz (Boston: 
Birkhäuser, 2004), 351-72. 



Journal of Space Philosophy 5, no. 1 (Spring 2016) 

76 

Λ32𝑛𝑛 = 𝑓𝑓 and Λ32𝑛𝑛−1 = Λ3 (7) 

Therefore, the Clifford number Λ3 represents a swap. The colourspace can now be 
decomposed into two ideals according to the equations 

𝑐𝑐ℎ1 = 𝑐𝑐ℎ1𝑓𝑓 ⨁  𝑐𝑐ℎ1𝑓𝑓 = 𝒢𝒢1 ⨁ �̂�𝒢1 (8) 

with main involuted 𝑓𝑓, and spaces 𝒢𝒢1 ≝ 𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠 {𝑓𝑓,Λ3} and �̂�𝒢1 ≝ 𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠 {𝑓𝑓,Λ�3 }. According 
to a theorem by Elié Cartan, all maximal abelian subalgebras of a semi-simple Lie 
algebra are mutually isomorphic. Further, the equations (7) imply that both 𝒢𝒢1 and �̂�𝒢1 are 
isomorphic with the small Clifford algebra 𝐶𝐶𝐶𝐶1,0 ∶= {𝐼𝐼𝐼𝐼, 𝑒𝑒1} ≃  2ℝ = ℝ⨁ℝ – the double 
ring of real numbers. Therefore, due to Equation 8 we end up with a fundamental 
decomposition 

𝑐𝑐ℎ1 ≃ 𝑐𝑐ℎ𝜒𝜒 ≃  ℝ⨁ℝ⨁ℝ⨁ℝ for each colourspace in the seal (see Figure 4). (9) 

 

Figure 4: The seal of space-time – Cartan subalgebras of the motion-group. 

Clearly, any colourspace can be spanned either by its orthogonal primitive idempotents 
or by its base units. If we consider the top of the seal, we represent the base units of 
𝑐𝑐ℎ1 by the quadruples: 

𝐼𝐼𝐼𝐼 = (+1, +1, +1, +1); 𝑒𝑒1 = (+1, +1,−1,−1); (10) 
𝑒𝑒24 = (+1,−1,−1, +1); 𝑒𝑒124 = (+1,−1, +1,−1) 

With these numbers and Equation 3 we calculate the primitive idempotents 𝑓𝑓1 =
(+1,0,0,0); 𝑓𝑓2 = (0, +1,0,0); 𝑓𝑓3 = (0,0, +1,0); 𝑓𝑓4 = (0,0,0, +1); and 𝒢𝒢1 spanned by 𝑓𝑓 =
(0,0, +1, +1) and Λ3 = (0,0,−1, +1, ). Now the story of the Minkowskian line elements, 
their metamorphosis, begins to become very interesting. In my books on primordial 
space, I had already investigated many important features of the HEPhy standard 
model space group. But now it had become possible to locate particles in a void without 
metric, and in such a way that they can represent the units of metric dynamic spaces 
themselves. In 2011, I heard Lou Kauffman speaking about eigenforms and 
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eigenvalues.17 That was on the occasion of the 100th birthday of Heinz von Foerster. 
Instead of using bivectors, Lou18 introduced the imaginary unit in the style of Rowan 
Hamilton,19 but developed the concept much further, by introducing the iterant views of 
dynamic systems for complex and quaternion arrays. Surprisingly, after having already 
restored the Dirac equation in this way in 1996, he now derived the discrete 
Schrödinger equation by the iterant algebra.20 It did not take much more to seek a 
method to construct a geometric Clifford algebra with the aid of iterant algebra. This was 
first carried out in Decay of Motion and in two papers.21 Now it became possible to 
conceive of particles as fourfold strings of polarities. The affinity with Isaacson’s streaks 
and time series of tetracodes became obvious. 

See the analogy between the quad-locations22 and the  4ℝ-representation of the base 
units of colourspace 𝑐𝑐ℎ1 = 𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠 {𝐼𝐼𝐼𝐼, 𝑒𝑒1, 𝑒𝑒24, 𝑒𝑒124}. Due to the peculiar construction of the 
iterant algebra, we can identify the iterant views with units having different grades: a 
spatial unit, a space-time area, and a space-time volume. 

𝑒𝑒1 ∶= [+1, +1,−1,−1]; 𝑒𝑒24 ∶= [+1,−1,−1, +1]; 𝑒𝑒124 ∶= [+1,−1, +1,−1] (11) 

As we know, it is the trigonal transition among those iterants that brings out discrete 
colours, satisfying the unitary symmetry of the motion. On the other hand, the 
colourspace, being a commutative Cartan subalgebra of the 𝐶𝐶𝐶𝐶3,1, is derived from the 
quaternion algebra by abstracting from the temporal order imposed on the iterants 
correlated with space 𝑐𝑐ℎ1 by the permutations 𝜑𝜑,𝜎𝜎, and 𝜏𝜏. In this sense, each 
colourspace 𝑐𝑐ℎ𝜒𝜒(𝜒𝜒 = 1, … , 6) turns out to be a contemporised synchronous image of the 
quaternion iterant temporal structure of relativistic quantum motion. 

Space-Time Algebra from Its Logical Basis 
Theorem:23 The iterant algebra with four grades is isomorphic with the Clifford algebra 
𝐶𝐶𝐶𝐶3,1 

Sketch of Proof: Consider the three real iterants 𝑒𝑒,𝑓𝑓,𝑔𝑔; they are logic icons, 

                                            
17 Louis H. Kauffman, “Eigenforms and Quantum Physics,” Cybernetics and Human Knowing 18, no. 3-4 
(2011): 111-21. 
18 Louis H. Kauffman, “Imaginary Values in Mathematical Logic,” in Proceedings of the Seventeenth 
International Symposium on Multiple-Valued Logic (Piscataway, NJ: IEEE, 1987), 282-89. 
19 W. R. Hamilton, “Theory of Conjugate Functions, or Algebraic Couples; with a Preliminary and 
Elementary Essay on Algebra as the Science of Pure Time,” Transactions of the Royal Irish Academy 
1837, no. 17:293-422. 
20 Louis H. Kauffman, “Iterants, Fermions and Majorana Operators,” in Unified Field Mechanics, Natural 
Science Beyond the Veil of Spacetime — Proceedings of the IX Symposium Honoring Noted French 
Mathematical Physicist, Jean-Pierre Vigier, Morgan State University, Baltimore. MD, November 16-19, 
2014, ed. Richard L. Amoroso, Louis H. Kauffman and Peter Rowlands (Singapore: World Scientific 
Publishing, 2016),1-32. 
21 Bernd Schmeikal, “Four Forms Make a Universe,” Advances in Applied Clifford Algebra 25, no. 1 
(2015): 1-23, doi:10.1007/s00006-015-0551-z; Bernd Schmeikal, “Free Linear Iconic Calculus, AlgLog 
Part 1: Adjunction, Disconfirmation and Multiplication Tables,” doi:10.13140/RG.2.1.2083.1841. 
22 Schmeikal, “Four Forms Make a Universe,” Table 12. 
23 This theorem is proved in Schmeikal, “Four Forms Make a Universe,” as Theorem 18. 
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≃ 𝑒𝑒 = [+1, +1,−1,−1], ≃ 𝑓𝑓 ∶= [+1,−1,−1, +1], ≃ 𝑔𝑔 ∶= [+1,−1, +1,−1] (11) 

together with the permutation operators 𝜎𝜎 ∶= (1 2)(3 4),𝜑𝜑 ∶= (1 3)(2 4), 𝜏𝜏 ∶= (1 4)(2 3). 
These transpositions of characters are generated by iteration time 𝑡𝑡 and tangle time 𝜂𝜂. 
Sequences are iterated by iteration time and by tangle time, and are applied to iterants 
of degree 4. The iterant time 𝑡𝑡 is represented by a permutation 4-cycle (1 2 3 4) and the 
tangle time by a 2-cycle (1 2). These two generate the symmetric group 𝑆𝑆4 . We have 
equations 

𝜎𝜎[𝑀𝑀, 𝑏𝑏, 𝑐𝑐,𝐼𝐼] = [𝑏𝑏, 𝑀𝑀,𝐼𝐼, 𝑐𝑐]𝜎𝜎 (12) 
𝜑𝜑[𝑀𝑀, 𝑏𝑏, 𝑐𝑐,𝐼𝐼] = [𝑐𝑐, 𝐼𝐼,𝑀𝑀, 𝑏𝑏]𝜑𝜑 
𝜏𝜏[𝑀𝑀, 𝑏𝑏, 𝑐𝑐,𝐼𝐼] = [𝐼𝐼, 𝑐𝑐, 𝑏𝑏,𝑀𝑀]𝜏𝜏 

Transpositions 𝜑𝜑, 𝜏𝜏,𝜎𝜎 can be derived from iterant and tangle-time operators in this order 

𝜑𝜑 = 𝑡𝑡2 = (1 2 3 4)(1 2 3 4) = (1 3)(2 4), portrayed as cycles (13) 
𝜏𝜏 = 𝜂𝜂𝜑𝜑𝜂𝜂 = (2 1)�(1 3)(2 4)�(2 1) = (1 4)(2 3), palindromic operation 
𝜎𝜎 = 𝜏𝜏𝜑𝜑 

Now there exist nine possibilities to let any permutation operator act on the unit iterants. 
Among these nine products, there are six quaternions. Among those there are the three 
we already know from the analysis of quad locations. Three of the nine squared give the 
identity 𝐼𝐼𝐼𝐼. The nine terms are 𝑒𝑒𝜎𝜎, 𝑒𝑒𝜑𝜑, 𝑒𝑒𝜏𝜏, 𝑓𝑓𝜎𝜎, 𝑓𝑓𝜑𝜑, 𝑓𝑓𝜏𝜏,𝑔𝑔𝜎𝜎,𝑔𝑔𝜑𝜑,𝑔𝑔𝜏𝜏. The idea of proving the 
theorem is challenged when we understand why among these nine we have six instead 
of three quaternions. That is, there are indeed two basic quaternion spaces in the 
Clifford algebra of Minkowski space, namely, a triple of bivectors {𝑒𝑒12, 𝑒𝑒23, 𝑒𝑒13} with 
definite signature {−1,−1,−1} and a further triple of time-like, quasi thermodynamic 
quaternions with different grades, the time-space quaternions {𝑒𝑒4, 𝑒𝑒123, 𝑒𝑒1234}. If we 
place these two sets of quaternions in parallel, we can see 

𝑒𝑒12  𝑒𝑒4
𝑒𝑒23  𝑒𝑒123
𝑒𝑒13  𝑒𝑒1234

⟹
𝑒𝑒124
𝑒𝑒1
𝑒𝑒24

 (14) 

how both quaternion groups, by Clifford multiplication, are carried to the angular 
momentum Cartan subalgebra, that is, to the colourspace of the logic units. The Clifford 
product in each row gives a component of the first colourspace, each of which squared 
gives the identity. Therefore, it is reasonable to assume, say, that the four quantities ,

,𝜑𝜑, 𝜏𝜏 generate a geometric algebra that includes even more than just two sets of 
quaternions. This could be the Clifford algebra 𝐶𝐶𝐶𝐶3,1 of the Minkowski space. To 
abbreviate the proof, let us factor in how the quantities , ,𝜑𝜑, 𝜏𝜏 interact. 

Consider polarity strings 𝑒𝑒,𝑓𝑓,𝑔𝑔 constituting the commutative algebra of a Klein-4 group; 
all the same the permutations 𝜎𝜎,𝜑𝜑, 𝜏𝜏 satisfy the same algebra. The mixed products of 
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polarity strings and permutations commute or anti-commute.24 For example, 
𝑒𝑒 commutes with 𝜎𝜎, but 𝑓𝑓 anticommutes with 𝜎𝜎: 

Use 𝑒𝑒 = [+1, +1,−1,−1], 𝜎𝜎 ∶= (1 2)(3 4), and (12): 𝜎𝜎[𝑀𝑀, 𝑏𝑏, 𝑐𝑐,𝐼𝐼] = [𝑏𝑏,𝑀𝑀,𝐼𝐼, 𝑐𝑐]𝜎𝜎, to get 𝜎𝜎𝑒𝑒 =
(1 2)(3 4)[+1, +1,−1,−1] = [+1, +1,−1,−1]𝜎𝜎 = 𝑒𝑒𝜎𝜎; use 𝑓𝑓 ∶= [+1,−1,−1, +1], 𝜎𝜎
∶= (1 2)(3 4) and rule (12): 𝜎𝜎[𝑀𝑀, 𝑏𝑏, 𝑐𝑐,𝐼𝐼] = [𝑏𝑏,𝑀𝑀,𝐼𝐼, 𝑐𝑐]𝜎𝜎, to get 𝜎𝜎𝑓𝑓 =
(1 2)(3 4)[+1,−1,−1, +1] = [−1, +1, +1,−1]𝜎𝜎 = −𝑓𝑓𝜎𝜎; likewise, use 𝑔𝑔
∶= [+1,−1, +1,−1] and 𝜎𝜎 to verify 𝜎𝜎𝑔𝑔 = −𝑔𝑔𝜎𝜎; and so on until we get to 𝜏𝜏𝑔𝑔 = −𝑔𝑔𝜏𝜏. The 
result of exterior multiplication gives us the following representation of the Clifford 
algebra of Minkowski space 𝐶𝐶𝐶𝐶3,1 

𝐼𝐼𝐼𝐼 𝑒𝑒1 = 𝑒𝑒 𝑒𝑒2 = 𝜑𝜑 𝑒𝑒3 = 𝜏𝜏𝑓𝑓 (15) 
𝑒𝑒4 = 𝑓𝑓𝜑𝜑 𝑒𝑒12 = 𝑒𝑒𝜑𝜑 𝑒𝑒13 = 𝑔𝑔𝜏𝜏 𝑒𝑒14 = 𝜑𝜑𝑔𝑔 
𝑒𝑒23 = 𝜎𝜎𝑓𝑓 𝑒𝑒24 = 𝑓𝑓 𝑒𝑒34 = −𝜎𝜎 𝑒𝑒123 = 𝜎𝜎g 
𝑒𝑒124 = 𝑔𝑔 𝑒𝑒134 = −𝜎𝜎𝑒𝑒 𝑒𝑒234 = −𝜏𝜏 𝑒𝑒1234 = 𝜏𝜏𝑒𝑒 

We verify the signature of the Minkowski space, but first of all its Cartan subalgebra 
using the XNOR: 

𝑒𝑒1𝑒𝑒1 = 𝑒𝑒2 = [+1, +1,−1,−1](≡)[+1, +1,−1,−1] = [+1, +1, +1, +1] = 𝐼𝐼𝐼𝐼 (16) 
𝑓𝑓2 = [+1,−1,−1, +1](≡)[+1,−1,−1, +1] = 𝐼𝐼𝐼𝐼 
𝑔𝑔2 = [+1,−1, +1,−1](≡)[+1,−1, +1,−1] = 𝐼𝐼𝐼𝐼 

Here, we indicate that component-wise multiplication is brought forth by logical 
equivalence of sequences. Also we have 

𝑒𝑒3𝑒𝑒3 == 𝜏𝜏𝑓𝑓𝜏𝜏𝑓𝑓 = 𝑓𝑓𝜏𝜏𝜏𝜏𝑓𝑓 = 𝑓𝑓𝐼𝐼𝐼𝐼𝑓𝑓 = 𝑓𝑓𝑓𝑓𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼 (17) 
𝑒𝑒4𝑒𝑒4 = 𝑓𝑓𝜑𝜑𝑓𝑓𝜑𝜑 = −𝜑𝜑𝑓𝑓𝑓𝑓𝜑𝜑 = −𝜑𝜑𝐼𝐼𝐼𝐼𝜑𝜑 = −𝜑𝜑𝜑𝜑𝐼𝐼𝐼𝐼 = −𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = −𝐼𝐼𝐼𝐼 

We summarise the first and most important result: 𝑒𝑒12 = 𝑒𝑒22 = 𝑒𝑒32 = 𝐼𝐼𝐼𝐼, 𝑒𝑒42 = −𝐼𝐼𝐼𝐼. We 
have also verified the (anti)commutation relations for Clifford algebra 𝐶𝐶𝐶𝐶3,1. As 
demanded by traditional mathematical physics, we could represent the iterants 𝑒𝑒,𝑓𝑓, as 
well as the transpositions by 4 x 4 matrices (18) 

𝑒𝑒 ∶= �
1 0
0 1

0 0
0 0

0 0
0 0

−1 0
0 −1

�; 𝑓𝑓 ∶= �
1 0
0 −1

0 0
0 0

0 0
0 0

−1 0
0 1

�; 𝜑𝜑 ∶= �
0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

�; 𝜎𝜎 ≝ �
0 1
1 0

0 0
0 0

0 0
0 0

0 1
1 0

� 

What does this mean? The matrices 𝑒𝑒, 𝑓𝑓 correspond (1) with the iterants or polarity 
strings, briefly, [+  +  −  −], [+ −  −  +]. Logically these represent (2) two different 
atomic statements 𝐴𝐴 and 𝐵𝐵 in Boolean logic, also symbolised by (3) the icons  and , 
which correspond with two idempotents in the Minkowski algebra, namely (4) ≃ 𝑓𝑓1 +
𝑓𝑓2 and ≃ 𝑓𝑓1 + 𝑓𝑓4. These two, simplest logic connectives, together with two 
transpositions of locations of characters, namely 𝜑𝜑 ∶= (1 3)(2 4), exchanging location 1 
with 3 and 2 with 4; and 𝜎𝜎 ∶= (1 2)(3 4), exchanging location 1 with 2 and 3 with 4, 
                                            
24 See Schmeikal, “Four Forms Make a Universe,” Table 17. 
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generate the basis not only of Minkowski space, but also of its 16-dimensional 
geometric algebra. Is not this a surprise? Two statements and two transpositions of 
characters in a linear fourfold array give rise to the basis of space-time geometry. We 
could represent this by matrices. The Minkowski space would thus be given by familiar 
4 x 4 matrices: 

𝑒𝑒1 = �
1 0
0 1

0 0
0 0

0 0
0 0

−1 0
0 −1

�; 𝑒𝑒2 = �
0 0
0 0

1 0
0 1

1 0
0 1

0 0
0 0

�; 𝑒𝑒3 = �
0 0
0 0

0 1
−1 0

0 −1
1 0

0 0
0 0

�; 𝑒𝑒4 = �
0 0
0 0

−1 0
0 1

1 0
0 −1

0 0
0 0

� 

But, the more important result is that any dynamic process in space-time algebra can be 
processed line after line by manipulation of iterants with the circuits of autonomic 
intelligence. 

Towards Line Processing of 𝐒𝐒𝐒𝐒(𝟑𝟑) ⊂ 𝑪𝑪𝑪𝑪(𝟑𝟑,𝟏𝟏) 
Using (15) and the imaginary unit 𝑖𝑖 for convenience, we can compute a representation 
of the 𝑆𝑆𝑆𝑆(3) that can be written in one line instead of as matrices, in terms of 
transpositions 𝜑𝜑,𝜎𝜎, 𝜏𝜏 combined with fourfold linear arrays, which means that the 
intellector needs two transposing swap gates, 𝜏𝜏 being immediately recognised as the 
present palindromic operation (19) 

𝑇𝑇1 = 1
4𝜏𝜏(𝐼𝐼𝐼𝐼 − 𝑓𝑓) = 1

2𝜏𝜏[0,1,1,0] 𝑇𝑇2 = 𝑖𝑖
4𝜏𝜏(𝑒𝑒 − 𝑔𝑔) = 𝑖𝑖

2𝜏𝜏[0,1,−1,0] 
𝑇𝑇3 = 1

4
(𝑒𝑒 − 𝑔𝑔) = 1

2
[0,1,−1,0] 𝑇𝑇4 = 1

4𝜑𝜑(𝐼𝐼𝐼𝐼 − 𝑔𝑔) = 1
2𝜑𝜑[0,1,0,1] 

𝑇𝑇5 = 𝑖𝑖
4𝜑𝜑(𝑒𝑒 − 𝑓𝑓) = 𝑖𝑖

2𝜑𝜑[0,1,0,−1] 𝑇𝑇6 = 1
4𝜎𝜎(𝐼𝐼𝐼𝐼 − 𝑒𝑒) = 1

2𝜎𝜎[0,0,1,1] 
𝑇𝑇7 = 𝑖𝑖

4𝜎𝜎(𝑔𝑔 − 𝑓𝑓) = 𝑖𝑖
2𝜎𝜎[0,0,1,−1] 𝑇𝑇8 = 1

4√3
(𝑒𝑒 − 2𝑓𝑓 + 𝑔𝑔) = 1

2√3
[0,1,1,−2] 

These expressions resemble up to a factor ½ the Gell-Mann matrices. In the 
corresponding matrix representation, we would consider zero in the first line and first 
column. What we need for line processing is the possibility of carrying out transpositions 
𝜑𝜑,𝜎𝜎, 𝜏𝜏 of four characters in line-arrays. On this basis, we can calculate 𝑡𝑡−,𝑢𝑢 − and 𝑣𝑣-
spin. For example, let us calculate the isospin shift operators: 

𝑇𝑇± = 1
√2

(𝑇𝑇1 ± 𝑖𝑖𝑇𝑇2) = 1
2√2

(𝜏𝜏[0,1,1,0] ∓ 𝜏𝜏[0,1,−10]) → 𝑇𝑇+ = 1
√2
𝜏𝜏[0,0,1,0] (20) 

and 𝑇𝑇− = 1
√2
𝜏𝜏[0,1,0,0]. Now verify the commutator equations for shift operators, first the 

product 

𝑇𝑇3𝑇𝑇+ = 1
2√2

[0,1,−1,0]𝜏𝜏[0,0,1,0] = 1
2√2

𝜏𝜏[0,−1,1,0][0,0,1,0] = 1
2√2

𝜏𝜏[0,0,1,0], next 

𝑇𝑇+𝑇𝑇3 = 1
2√2

𝜏𝜏[0,0,1,0][0,1,−1,0] = 1
2√2

𝜏𝜏[0,0,−1,0]; therefore, we obtain the commutator 

⟦𝑇𝑇3,𝑇𝑇+⟧ = 𝑇𝑇3𝑇𝑇+ − 𝑇𝑇+𝑇𝑇3 = 1
√2
𝜏𝜏[0,0,1,0] = 𝑇𝑇+ and likewise we get ⟦𝑇𝑇3,𝑇𝑇−⟧ = −𝑇𝑇− (21) 

In this representation, the 𝑓𝑓1 is a fixed lepton, and 𝑓𝑓2,𝑓𝑓3,𝑓𝑓4 are quarks. We have 
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𝑇𝑇3𝑓𝑓2 = 1
2

[0,1,−1,0][0,1,0,0] = 1
2

[0,1,0,0] = 1
2
𝑓𝑓2 (22) 

𝑇𝑇8𝑓𝑓2 = 1
2√3

[0,1,1,−2][0,1,0,0] = 1
2√3

[0,1,0,0] = 1
2√3

𝑓𝑓2    

The eigenvector 𝑓𝑓2 = [0,1,0,0] corresponds to a state |𝜇𝜇〉, where 𝜇𝜇 = (𝜇𝜇1, 𝜇𝜇2) =
�+ 1

2
, + 1

2√3
� is distinguished by its eigenvalues under the operators 𝑇𝑇3,𝑇𝑇8 of the Cartan 

subalgebra of 𝑆𝑆𝑆𝑆(3,ℂ). We also have that 

𝑇𝑇3𝑓𝑓3 = 1
2

[0,1,−1,0][0,0,1,0] = −1
2

[0,0,1,0] = −1
2
𝑓𝑓3 (23) 

𝑇𝑇8𝑓𝑓3 = 1
2√3

[0,1,1,−2][0,0,1,0] = 1
2√3

[0,0,1,0] = 1
2√3

𝑓𝑓3, corresponding to the weight vector 

𝜇𝜇′ = �− 1
2

, + 1
2√3

�, and finally 

𝑇𝑇3𝑓𝑓4 = 1
2

[0,1,−1,0][0,0,0,1] = 0  

𝑇𝑇8𝑓𝑓4 = 1
2√3

[0,1,1,−2][0,0,0,1] = 1
2√3

[0,0,0,−2] = − 1
√3
𝑓𝑓4 for the weight vector 

𝜇𝜇′′ = �0, + 1
√3
�  

Primitive idempotents 𝑓𝑓2,𝑓𝑓3,𝑓𝑓4 can thus be identified with quark-states |𝑢𝑢〉, |𝐼𝐼〉, |𝑠𝑠〉. Notice, 
that the Cartan algebra {𝑇𝑇3,𝑇𝑇8} is a subalgebra of the Cartan algebra of the rank 3 
symmetric unitary group 𝑆𝑆𝑆𝑆(4) ⊂ ℂ⨂𝐶𝐶𝐶𝐶3,1,25 which is given by the three commuting 
multivectors {𝑒𝑒1, 𝑒𝑒24, 𝑒𝑒124}, or what we have abbreviated by {𝑒𝑒,𝑓𝑓,𝑔𝑔}. 

Words of LICO 
When discussing dialectical machine vision, Isaacson performs a turnover from BIP to 
DIP phenomenology.26 We are confronted with neural circuits, constituted by three 
types of neurons, namely, type C – central, type P – peripheral, and type H – horizontal. 
A CA DIP-cell is represented by a C-neuron surrounded by eight P-neurons in a regular 
arrangement.27 In my paper “On Consciousness & Consciousness Logging Off 
Consciousness,”28 I tried to go back in time to see what happened. DIP had begun with 
a 2D, 256-state Moore-neighbourhood cellular automaton. This was realised by a highly 
interacting network of BIPs. Inputs to DIP were some digitised images,29 given by 
silhouettes of objects, so-called retinels, embedded in some ground, both represented 
by pixels with different grey values. The CA operated on the input image by carrying out 
an 8-way comparison of each pixel with its eight neighbours, giving a difference or no 
difference. Each single, 8-way comparison thus yielded one value out of 28 = 256 
possible ones. Each retinel was then written down by words in an ideographic alphabet 
of the visual cortex with 256 letter-shapes, each of which represented one of the 

                                            
25 The connection between 𝐶𝐶𝐶𝐶3,1, 𝑆𝑆𝑆𝑆(4,ℂ) and 𝑆𝑆𝐿𝐿(4,ℂ) is described by Lie brackets in Chapter 2 of Bernd 
Schmeikal, Primordial Space – Pointfree Space and Logic Case (New York: Nova Science, 2012). 
26 Isaacson, “Dialectical Machine Vision,” 35. 
27 Ibid., Figure 13. 
28 Bernd Schmeikal, “On Consciousness & Consciousness Logging Off Consciousness,” 
www.researchgate.net/publication/289335467_On_Consciousness, January 2016, 11-15. 
29 See Isaacson, “Dialectical Machine Vision,” Figures 10 to 12. 
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possible relationships. These fonts resemble the 16 letters of the logic alphabet LICO. 
In my view, Isaacson’s resistance to describing DIP in neural terms, has a much more 
serious reason than those social entanglements affiliated with McCulloch, Pitts, Foerster 
and the Perceptron,30 namely, the notable features of the retinoid neuronal system of 
consciousness follow a deeper template that is more fundamental than neural nets. Its 
realization by the process of nature is at least as simple as a CA of the type DIP. The 
ground template is provided by the process of space-time itself. Primordial space 
provides rules for the formation of elementary particles, atoms, chemical elements, 
biomolecules, and genetic code. 

In my article “Free Linear Iconic Calculus - AlgLog Part 1,” I showed how the shapes of 
the iconic letters can be understood in two ways, namely (1) by studying the truth tables 
of the corresponding Boolean connectives, or (2) by simply representing each primitive 
idempotent of the 𝐶𝐶𝐶𝐶3,1 by a bar in a little square. Each icon has an algebraic expression 
in terms of four primitive idempotents 𝑓𝑓1, 𝑓𝑓2,𝑓𝑓3,𝑓𝑓4 (see Column 4 of Table 2)31 of the 
Clifford algebra 𝐶𝐶𝐶𝐶3,1 which span the colourspace 𝑐𝑐ℎ1, and likewise as multivector in this 
linear commutative vector space (see Columns 5 and 7). Every icon can also be 
obtained by superimposing four icons, which represent the basis of this space. 

Table 2: Correspondences in Algebra Structures for Logic Icons 

Nr. 
icon Boole LICO 

letter 
Idempotents 
𝑓𝑓 in 𝐶𝐶𝐶𝐶3,1 

𝑓𝑓 Rep in colourspace 
𝑐𝑐ℎ1 ⊂ 𝐶𝐶𝐶𝐶3,1 

Polarity 
string 

Deformed Polarity string 
Rep in colourspace 𝑐𝑐ℎ1 

ℐ01 A ∧ ¬A  0 0 [−  −  −  −] −𝐼𝐼𝐼𝐼 
ℐ02 𝐴𝐴 ∧ 𝐵𝐵  𝑓𝑓1 

1
4
(𝐼𝐼𝐼𝐼 + 𝑒𝑒1 + 𝑒𝑒24 + 𝑒𝑒124) [+ −  −  −] 1

2
(−𝐼𝐼𝐼𝐼 + 𝑒𝑒1 + 𝑒𝑒24 + 𝑒𝑒124) 

ℐ03 A ∧ ¬B  𝑓𝑓2 
1
4
(𝐼𝐼𝐼𝐼 − 𝑒𝑒1 + 𝑒𝑒24 − 𝑒𝑒124) [−  +  −  −] 1

2
(−𝐼𝐼𝐼𝐼 + 𝑒𝑒1 − 𝑒𝑒24 − 𝑒𝑒124) 

ℐ04 
¬A
∧ ¬B  𝑓𝑓3 

1
4
(𝐼𝐼𝐼𝐼 − 𝑒𝑒1 − 𝑒𝑒24 + 𝑒𝑒124) [−  −  +  −] 1

2
(−𝐼𝐼𝐼𝐼 − 𝑒𝑒1 − 𝑒𝑒24 + 𝑒𝑒124) 

ℐ05 ¬A ∧ B  𝑓𝑓4 
1
4
(𝐼𝐼𝐼𝐼 + 𝑒𝑒1 − 𝑒𝑒24 − 𝑒𝑒124) [−  −  −  +] 1

2
(−𝐼𝐼𝐼𝐼 − 𝑒𝑒1 + 𝑒𝑒24 − 𝑒𝑒124) 

𝓘𝓘𝟎𝟎𝟎𝟎 𝐀𝐀  𝒇𝒇𝟏𝟏 + 𝒇𝒇𝟐𝟐 𝟏𝟏
𝟐𝟐
(𝑰𝑰𝑰𝑰 + 𝒆𝒆𝟏𝟏) [+ + −  −] 𝒆𝒆𝟏𝟏 

ℐ07 ¬A  𝑓𝑓3 + 𝑓𝑓4 
1
2
(𝐼𝐼𝐼𝐼 − 𝑒𝑒1) [−  −  +  +] −𝑒𝑒1 

𝓘𝓘𝟎𝟎𝟎𝟎 𝐀𝐀 ≡ 𝐁𝐁  𝒇𝒇𝟏𝟏 + 𝒇𝒇𝟑𝟑 𝟏𝟏
𝟐𝟐
(𝑰𝑰𝑰𝑰 + 𝒆𝒆𝟏𝟏𝟐𝟐𝟏𝟏) [+ −  +  −] 𝒆𝒆𝟏𝟏𝟐𝟐𝟏𝟏 

ℐ09 A ≢ B  𝑓𝑓2 + 𝑓𝑓4 
1
2
(𝐼𝐼𝐼𝐼 − 𝑒𝑒124) [−  +  −  +] −𝑒𝑒124 

ℐ10 B  𝑓𝑓1 + 𝑓𝑓4 
1
2
(𝐼𝐼𝐼𝐼 + 𝑒𝑒24) [+ −  −  +] 𝑒𝑒24 

ℐ11 ¬B  𝑓𝑓2 + 𝑓𝑓3 
1
2
(𝐼𝐼𝐼𝐼 − 𝑒𝑒24) [−  + + −] −𝑒𝑒24 

ℐ12 𝐴𝐴 ∨ 𝐵𝐵  𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓4 
1
4
(3𝐼𝐼𝐼𝐼 + 𝑒𝑒1 + 𝑒𝑒24
− 𝑒𝑒124) 

[+ + −  +] 1
2
(𝐼𝐼𝐼𝐼 + 𝑒𝑒1 + 𝑒𝑒24 − 𝑒𝑒124) 

ℐ13 ¬A ∨ B  𝑓𝑓1 + 𝑓𝑓3 + 𝑓𝑓4 
1
4
(3𝐼𝐼𝐼𝐼 − 𝑒𝑒1 + 𝑒𝑒24
− 𝑒𝑒124) 

[+ −  +  +] 1
2
(𝐼𝐼𝐼𝐼 − 𝑒𝑒1 + 𝑒𝑒24 + 𝑒𝑒124) 

                                            
30 Warren S. McCulloch and Walter Pitts, “A Logical Calculus of the Ideas Immanent in Nervous Activity,” 
Bulletin of Mathematical Biology 5, no. 4 (1943): 115-33; Heinz von Foerster, Das Gedächtnis: Eine 
Quantenphysikalische Untersuchung (Vienna: Franz Deuticke, 1948). 
31 Bernd Schmeikal, “Algebra of Quantum Logic,” in Clifford Algebras and their Application in 
Mathematical Physics, ed. R. Ablamowicz and B. Fauser, (Boston: Birkhäuser, 2000), 219-41. 
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ℐ14 A ∨ ¬B  𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 
1
4
(3𝐼𝐼𝐼𝐼 + 𝑒𝑒1 − 𝑒𝑒24

+ 𝑒𝑒124) 
[+ + + −] 1

2
(𝐼𝐼𝐼𝐼 + 𝑒𝑒1 − 𝑒𝑒24 + 𝑒𝑒124) 

ℐ15 
¬A
∨ ¬B  𝑓𝑓2 + 𝑓𝑓3 + 𝑓𝑓4 

1
4
(3𝐼𝐼𝐼𝐼 − 𝑒𝑒1 − 𝑒𝑒24
− 𝑒𝑒124) 

[−  +  + +] 1
2
(𝐼𝐼𝐼𝐼 − 𝑒𝑒1 − 𝑒𝑒24 − 𝑒𝑒124) 

ℐ16 A ∨ ¬A  � 𝑓𝑓𝑖𝑖
4

𝑖𝑖
= 𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼 [+ + + +] +𝐼𝐼𝐼𝐼 

We can write 

𝑐𝑐ℎ1 = 𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠ℝ{𝐼𝐼𝐼𝐼,𝐴𝐴,𝐵𝐵,≡} = 𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠ℝ{ , , , } ≃ 𝑠𝑠𝑠𝑠𝑀𝑀𝑠𝑠ℝ{𝐼𝐼𝐼𝐼, 𝑒𝑒1, 𝑒𝑒24, 𝑒𝑒124} 

For example, we can obtain the logic adjunction 𝐴𝐴 ∨ 𝐵𝐵 by superimposing the generating 
icons 

𝐴𝐴 ∨ 𝐵𝐵 ≃ = 1
2

( + + − )   

That is, we get three minus one on the upper bar, which, divided by two, gives one on 
the upper bar; one minus one on the lower bar, giving zero; two on the left bar divided 
by two, giving one bar on the left; and two divided by two, giving one bar on the right. 
Hence, the icon looks like . In analogous way, any of the 16 icons can be obtained 
from the four , , , .What is interesting is that these four can be represented by 
binary sequences or polarised strings or by logic circuits. The most important 
representation seems to be given by the XNOR gate, symbolised by the identifying 
connective ≡, and one of the sequences, say [+  +  −  −] and the two swap gates. 
There is a special beauty in such a design, as the logic equivalence comes in as an 
element of both the carrier set and the binary operation. Hence, when we multiply A with 
B we actually have the expression 

A B = [+, +,−,−][+,−,−, +] = [+,−, +,−] representing the identity A ≡ B. 

So we can span this invariant subspace 𝑐𝑐ℎ1 by one of two signals 𝐴𝐴,𝐵𝐵 and the identity 
machine: 

1) generating base units 

𝑒𝑒1  

𝑒𝑒24  

𝑒𝑒124 equivalent to the signal : . . . . . . 
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We need two swap gates to have the whole Clifford algebra of space-time. It is not a 
problem to imagine how these elements could be realised by neurons. 

 

I would suggest that we design space-time the way we do it in Clifford algebra, because 
our brain functions in a way that prompts such a mathematical design. Surprisingly, 
Isaacson’s BIP was indeed built up with the aid of such binary signals and by arrays of 
parallel XNOR gates, which is essential for the emergence of a Minkowskian space-time 
algebra. But I am missing one swap-gate that is necessary to iterate from the Cartan 
subalgebras. The BIP brings forth important features of the commutative subalgebras of 
the angular 4-momentum subspaces of HEPhy. Interpreted as articulations of 
neighbourhood, the icons of LICO describe a topological procedure operating on 
strings. We can apply LICO to LICO words. Then we obtain Hegelian cycles of recurring 
patterns of idempotent locations that may be interpreted as events in angular 4-
momentum space, as dynamic processing of 𝑆𝑆𝑆𝑆(4)- and 𝑆𝑆𝑆𝑆(3)-multiplets (see Figure 
5). 

 
Figure 5: Recurring patterns of strings of idempotent locations. 
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This periodic pattern can also be generated by starting off from the second line of three 
empty neighbourhoods. Isaacson’s discovery of how a simple cellular automaton 
unexpectedly encoded the baryon octet of elementary particle physics is not just a 
happy coincidence, but it is rooted in a deep archetypical connection between geometry 
and logic.32 We do not yet know where the journey goes, but it seems that the rigor 
completely works out. 

Recursive Distinctioning and Antecursive Conflation 
Isaacson and Kauffman have written a paper about what they call RD.33 They have also 
written an advance statement as a letter in the Journal of Space Philosophy, to which I 
now refer.34 This whole undertaking, which seems to carry on the torch of Hegelian 
dialectics, that is, limit cycles seen by a theory of dialectic cyclic development, may be 
fraught with problems philosophically, but seems serious mathematical business. It is 
also based on Kauffman’s own work on recursion and distinction in cybernetics and his 
peculiar care for the investigations of George S. Brown into the laws of form.35 
Personally, I was not overmuch delighted by this darting off, since the two experts in 
Hegelian Ansatz seem to have neglected exactly one half of the dialectics and one half 
of the story of evolution, which has much of the quality of a fairy tale, anyway. In order 
to see the whole, I made a hotfoot invention of the dual process, that is, the ante-cursive 
conflation. To see what that is, imagine a UFO coming in from the horizon of your world. 
It looks like this: 

                                            
32 Joel D. Isaacson, Steganogramic Representation of the Baryon Octet in Cellular Automata, (St. Louis, 
MO: IMI Corporation, 2015), www.isss.org/2001meet/2001paper/stegano.pdf (accessed December 8, 
2015). 
33 Journal of Space Philosophy 5, no. 1 (Spring 2016): 9-63. 
34 Joel D. Isaacson and Louis H. Kauffman, “Recursive Distinguishing,” Journal of Space Philosophy 4, 
no. 1 (2015): 23-27. 
35 Louis K. Kauffman, Map Reformulation (London: Princelet Editions, 1986). 
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As it approaches the egoistic centre of your world, its ideographic shape becomes a 
readable message, readable even in the familiar sense, from left to right, from top to 
bottom. But you cannot read it, because some rules that would provide the meaning are 
missing. Fortunately, a kid comes in and informs you that, at present, the I means ‘I’ as 
usual, that is, ego, and the U means you. 3 I should denote a written sequence of three 
I’s, that is, III, whereas 4 U would stand for the sequence UUUU, that would be all. So 
you write down the 8-letter word 

IIIUUUUI 

Being a philosopher, someone who likes wisdom, you can see the meaning of this word: 
It all has to begin with an invisible sentence, namely “I referring to m I self and I am 
referring to You and You are referring to Yourself and You are referring to me.” So the 
top of the UFO “3 I 4 U 1 I” is a description of the line IIIUUUUI. The next line should be 
a description of line 3 I 4 U 1 I. Reading character by character, we see that we have 
one ‘3’, that is, 1 3, further one I, that is, 1 I, further one ‘4’, that is, 1 4, next 1 U, and so 
on. Altogether, we get 1 3 1 I 1 4 1 U 1 1 1 I. This provides the rule for the RD. Applying 
the rule many times, we obtain line after line following on from Invisible Line 1: I 
referring to m I self and I referring to You and you referring to Yourself and You referring 
to me. 
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Invisible Line 2: I II U UUU I 

Line 3: 3 I 4 U 1 I 

Line 4: 1 3 1 I 1 4 1 U 1 1 1 I (Line 4 describing Line 3) 

Line 5: 1 1 1 3 1 1 1 I 1 1 1 4 1 1 1 U 3 1 1 I 

Line 6: 3 1 1 3 3 1 1 I 3 1 1 4 3 1 1 U 1 3 2 1 1 I 

Line 7: word1I word2You word3I (describing Line 6) 

Recursive 
D 
i 
s 
t 
i 
n 
g 
u 
ishing 

It turns out that the domain of interpersonal experience (I and You) is transformed by 
mathematical self-reference/reflexive linguistic domain into a wilderness of numbers by 
which I and U are isolated from each other. There is some segregating demon in the 
mathematical detail. It seems that a wilderness of numbers is not necessarily essentially 
different from a wilderness of letters, is not essentially different from a wilderness of 
words, is not   of sentences   of threads and so on ad infinitum. 

But now do the reverse! Now you have to be attentive for pairs of characters: 3 1 
means ‘111’   

For example, begin with: 3 1 1 3 3 1 1 I 3 1 1 4 3 1 1 U 1 3 2 1 1 I 

Line 6: 3 1 1 3 3 1 1 I 3 1 1 4 3 1 1 U 1 3 2 1 1 I 

Make 5: 1 1 1 3 1 1 1 I 1 1 1 4 1 1 1 U 3 1 1 I 

Make 4: 1 3 1 I 1 4 1 U 1 1 1 I 

Make 3: 3 I 4 U 1 I 

Make 2: IIIUUUUI 

Antecursive 
C 
o 
n 
f 
l 
a 
t 
i 
o 
n 

By doing antecursive conflation, we get rid of the separating mass of numbers, and we 
are back at U and I. In this way, we obtain the lower half of the UFO converging towards 
our six letter word 3 I 4 U 1 I. 

3 1 1 3 1 1 1 2 3 1 1 2 1 1 1 3 1 1 2 2 2 1 1 I 3 1 1 3 1 1 2 2 2 1 1 4 3 1 1 3 1 1 2 2 2 1 1 U 1 3 2 1 1 3 2 1 3 2 2 1 1 I 
1 1 1 3 1 2 1 1 1 2 1 3 1 2 2 1 1 I 1 1 1 3 1 2 2 1 1 4 1 1 1 3 1 2 2 1 1 U 3 1 1 3 1 1 2 2 2 1 1 I 

1 3 2 1 2 3 2 1 1 I 1 3 2 1 1 4 1 3 2 1 1 U 1 1 1 3 1 2 2 1 1 I 
3 1 1 3 3 1 1 I 3 1 1 4 3 1 1 U 1 3 2 1 1 I 

1 1 1 3 1 1 1 I 1 1 1 4 1 1 1 U 3 1 1 I 
1 3 1 I 1 4 1 U 1 1 1 I 

3 I 4 U 1 I 

What is important is to see the difference in being aware for one definite character 
while describing it by RD, and being attentive for a relation, that is, two characters, 
while carrying out an antecursive conflation. Future work will clarify this final issue of 
analysis. 
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About the Author: Bernd Anton Schmeikal, born May 15, 1946, a retired freelancer in 
research and development, qualified in Sociology with a treatise about cultural time 
reversal. He is a real maverick, still believing that social life can be based on openness 
and honesty. As a PhD philosopher from Vienna, with a typical mathematical physics 
background, he entered the trace analysis group of the UA1 Experiment at CERN, 
under the leadership of Walter Thirring, in 1965. This was in the foundation phase of the 
Institute for High Energy Physics (HEPhy) at the Austrian Academy of Science. He has 
always been busy solving fundamental problems concerning the unity of matter and 
space-time, the origin of the HEPhy standard model, and the phenomenology of 
relativistic quantum mechanics. In the Sociology Department of the Institute for 
Advanced Studies (HIS Vienna), he helped James Samuel Coleman to conceive his 
mathematics of collective action as a cybernetic system, and gave the process of 
internalization of collective values an exact shape. He implemented many 
transdisciplinary research projects for governmental and non-governmental 
organizations, universities and non-university institutions, and several times introduced 
new views and methods. He founded an international work stream that, for the first time, 
worked under the name of the Biofield Laboratory (BILAB). Although close to fringe 
science and electromedicine, the work of BILAB had a considerable similarity with the 
Biological Computer Laboratory run earlier by Heinz von Foerster. Lately, he has 
applied Foerster’s idea of a universal relevance of hyperbolic distributions (Zipf’s law) in 
social science to the labour market. This signifies a last contribution to the research 
program of the Wiener Institute for Social Science Documentation and Methodology 
(WISDOM) under the sponsorship of the Austrian Federal Presidential Candidate Rudolf 
Hundstorfer. He is convinced that a unity of science and culture can be achieved, but 
that this demands more than one Einstein. Consequently, he sought cooperation with 
Louis Kauffman and Joel Isaacson. 

 

Editors’ Notes: Dr. Bernd Schmeikal’s review and evaluation of Joel Isaacson and 
Louis Kauffman’s RD research and paper, published in this Journal, is a very valuable 
contribution to this forefront science investigation of Nature’s Cosmic Intelligence. Dr. 
Schmeikal, University of Vienna Professor in mathematics, linguistics, and physics is 
one of the world’s distinguished scholars for this special field of universe autonomous 
intelligence. He begins his abstract with the statement: “This paper investigates a 
universal creative system,” and ends it with “That is to say, our universe may be a 
representation of Isaacson’s system, and entertainingly, with his US Patent specification 
4,286,330, it seems he has patented creation.” Bob Krone and Gordon Arthur. 
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Journal of Space Philosophy (JSP) Board of Editors 
Kepler Space Institute (KSI) is honored to have 42 of the world’s Space community professionals 
as members of the Board of Editors for the Journal of Space Philosophy. 

Dr. Elliott Maynard, our Journal of Space Philosophy Board of Editors colleague, has beautifully 
stated both the purpose and the style for our peer reviews: 

This is such a hi-caliber group of leading-edge thinkers and supercharged 
individuals, it should be natural for each of us to wish to provide a supportive and 
synergistic environment for the others. I have also learned always to have 
someone else proof read any material I write, as I have discovered that the brain 
tends not to “see” my own simple mistakes. Ergo, within the new Kepler context I 
feel editors should be there to support our writers in the most creative and positive 
ways possible. (e-mail to Bob Krone, March 23, 2013) 

The purposes of peer reviews of article submissions to the Journal of Space Philosophy are: (1) 
to determine the relevance to the Vision and Goals of KSI; (2) to help the author(s) improve the 
article in substance and style or recommend references; and (3) to provide publication 
recommendations to the Editor-in-Chief. 
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